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Preface 

The work described in this report was performed by the Hughes Aircraft 
Company and the Guidance and Control Division of the Jet Propulsion Labora- 
tory, under the cognizance of the Szrrueyor Project. 

This summary provides a historical documentation of the developnlent of the 
Sz~rueyor  main battery starting late in 1961 and continuing through February 
1968 when all seven Szlrueyor spacecraft launchings were completed. The evolu- 
tion of the battery design from sealed single cells to a manifold design is 
described in a chronological sequence. The vast amount of written material and 
test data available from the Jet Propulsion Laboratory, Pasadena, Calif., Hughes 
Aircraft Co., Culver City, Calif., and ESB Inc., Raleigh, N. C., (formerly Electric 
Storage Battely Co.), provided the 'basis of this report. Careful attention has 
been given to presentation of the most significant data so the reader will be able 
to follow the design decisions. In addition, these data may be useful in consid- 
ering future battery designs. 
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Abstract 

Electrical power for the seven Sz~~veyor spacecraft was provided by a planar 
solar panel and a secondary sealed, silver-zinc main battery. The main battery 
provided energy during transit, touchdown, and the lunar night. An auxiliary 
battery was used on the first four spacecraft to provide redundant energy storage 
capacity for the transit and landing phases. 

The main battery design evolved over four distinct development phases that 
were designated: experimental, development, prototype and flight. Evolution of 
the final design, the test data relating to each model and the logic leading to the 
adoption of design improvements are described in this report. Problem areas 
and solutions are discussed as they relate to each of the phases. 

Unique features of this limited-cycle-life silver-zinc battery include high 
energy density (80 W-h/lb), hermetically-sealed design, a common gas manifold 
and a pressure transducer that permitted automatic charge termination. 

The battery electrical and physical characteristics are presented in detail for 
each model. Data are included from qualification, acceptance, solar-thermal- 
vacuum, and mission simulation testing and actual flight. Thermal and calori- 
metric measurements are presented with the lunar night survival data. 

The auxiliary battery was a primary silver-zinc battery. A brief design descrip- 
tion is presented along with limited laboratory and flight test data. Mission 
simulation and flight data, for both main and auxiliary battery models, indicate 
that design goals were either met or exceeded. This success was achieved by a 
thorough development and test program, followed by considerable emphasis 
on tight control of manufacturing processes during the fabrication and assembly 
of flight batteries. 
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Surveyor Batteries 
FINAL ENGINEERING REPORT 

I. Introduction 

A. General 

The Swoeyor spacecraft was designed to effect a transit 
from earth to the moon, perform a soft lunar landing, 
gather basic scientific and engineering data relative to 
moon environment and characteristics, and transmit these 
data to earth. The spacecraft system is depicted in Fig. 1. 
Electrical power was provided to the spacecraft by the 
electric power subsystem during the 63-71 h transit, 
terminal descent, soft lunar landing, and during opera- 
tion on the lunar surface. A block diagram of the Suroeyor 
power subsystem is shown in Fig. 2. Basic components 
of the electric power subsystem and their functions were 
as follows: 

(1) The solar panel served to charge the main battery 
and power the spacecraft during transit and the 
lunar day. 

(2) The main battery provided electrical energy stor- 
age for the spacecraft. 

(3) The auxiliary battery provided a backup source for 
emergency power, and power during peak loads 
on the main battery and solar panel, and additional 
power for the engineering payload. 

(4) The battery charge regulator served to control and 
regulate the charging of the main battery from 
the solar panel. 

(5) The auxiliary battery control provided the con- 
trolled application of auxiliary battery power to 
the unregulated 22-V bus in the event that main 
battery potential dropped below a pre-set level. 

(6) The boost regulator converted unregulated battery 
power to regulated power for the spacecraft. 

(7) The main power switch removed main battery 
potential (unregulated bus) from the spacecraft 
system. 

(8) The engineering mechanisms auxiliary provided 
squib-firing power, and the control and power 
switching for various spacecraft circuits. 

The major electrical components were located on the 
spacecraft as shown in Fig. 3. The main battery was 
located in compartment A and the auxiliary battery in 
a special compartment. The main battery was charged 
by conversion of solar panel energy through the opti- 
mum charge regulator circuits; the latter were located 
within the battery charge regulator in compartment A. 

JPL TECHNICAL MEMORANDUM 33-432 



r ------------------- SPACECRAFT 1 
PROPULSION 

e OPTICAL AND INERTIAL SENSING 

a LUNAR VELOCITY AND ALTITUDE a VERNIER ENGINE SYSTEM 

a M A I N  RETROROCKET 

a ATTITUDE AND VELOCITY 

ELECTRIC POWER 
ENGINEERING PAYLOAD 

a SURVEY TELEVISION 
0 POWER SOURCES 

a AUXILIARY BATTERY A N D  
a CONTROL 

e ENERGY STORAGE a AUXILIARY SIGNAL 
PROCESSING 

TELECOMMUNICATIONS APPROACH TELEVISION 

a TRANSMIT AND RECEIVE 

e COMMAND DISPERSAL ENGINEERING INSTRUMENTATION 

a SIGNAL PROCESSING 
AND SWITCHING a MONITOR BASIC BUS 

FUNCTIONS 

a INTEGRATING STRUCTURE 

e WIRING INTERCONNECTIONS 

a MECHANISMS I I 
a THERMAL CONTROL 

1 TO DEEP SPACE INSTRUMENTATION FACILITY 

Fig. 1. Spacecraft system block diagram 

Distribution of electric power took place over three, 29-V 
dc regulated buses and a 22-V unregulated bus, (see 
Fig. 2). Electric power subsystems in Surveyors V, VI, 
and VII did not contain auxiliary batteries and controls, 
and energy storage was limited to the main battery. 

The silver-zinc1 couple, or, more appropriately, the 
silver oxide-zinc couple, was selected for the spacecraft 
batteries on the basis of highest energy density (watt- 
hours per pound) and the ability to meet the mission 
requirements. Use of the silver-zinc couple on the  range^ 
and Alari~zer spacecraft also supported the selection. 

Although there is some difference of opinion concern- 
ing exact cell reactions of the silver-zinc system, the 

'In this report, the cell is referred to as silver-zinc. 

-------) SIGNAL AND 
POWER FLOW 

----- A 

following equations provide a reasonably valid indica- 
tion of the major reactants and products: 

discharge 
2 Ago + Zn + H,O 

J/ 
ZnO + H,O 

discharge 
Ag,O + Zn + H,O 4- 2 Ag + Zn (OH)? 

charge / (1.55 1) 

ZnO + H,O 
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Fig. 2. Electrical power subsystem block diagram 
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Fig. 3. Surveyor spacecraft 

The potentials cited in the equations represent open 
circuit values for the upper and lower plateaus, respec- 
tively. Under load, potentials of 1.7 and 1.5 V are typical 
levels. Figure 4 shows the voltage characteristics of the 
silver-zinc couple. The reaction takes place in an elec- 
trolyte of aqueous potassium hydroxide. The electrodes 
are separated from each other by semipermeable 
membranes. The main battery was a secondary battery 
having limited recharge capability, while the auxiliary 
battery was a primary, manually activated battery. 

I t  is apparent from Fig. 4 that the silver (I) oxide 
(Ag'O) lower plateau constitutes approximately 70% of 
the discharge capacity with the silver (11) oxide (Ago) 
furnishing the remaining 30%. On charge, the contribu- 
tions are reversed. These percentages may be appreciably 
altered by conditions of temperature and current rate. 
Further information concerning silver-zinc cell char- 
acteristics may be found in subsequent sections of this 
report. 

B. Surveyor Main Battery Models 

Development of the Szcrveyor main battery proceeded 
in the following four distinct stages: 

(1) Experimental model (203)'. 

(2) Development model (204)'. 

(3) Prototype model (205)'. 

(4) Flight model (205)2. 

The function of each of the models was as follows: 

(1) The experimental model consisted of the complete 
equipment and was constructed to demonstrate 
the technical soundness of the basic ideas. 

'Model number assigned by the manufacturer, ESB, Inc., (formerly, 
Electric Storage Battery Co.) Raleigh, N.C. 
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Table 1. Program milestones for Surveyor 
main battery 

Fig. 4. Silver-zinc cell voltage characteristics 

(2) The development model was designed to meet 
specification performance requirements and estab- 
lish technical requirements for the final article. 
This model conformed to the required space 
envelope and mounting dimensions. 

(3) The prototype (preproduction) model was repre- 
sentative of the final mechanical, electrica1 power, 
and performance design. This model employed 
the parts, materials, and processes used in the 
model that was submitted for quality assurance 
tests. 

(4) The flight (production) model incorporated the final 
mechanical and electrical power performance de- 
sign, that was fully certged by a quality assurance 
test program to meet all requirements of the gov- 
erning specifications and drawings. 

C. Program Milestones and Schedule 

Table 1 is a tabulation of milestones including con- 
tract awards, battery deliveries, and launches. The pro- 
gram schedule, from design to delivery and acceptance, is 
shown in Fig. 5. 

11. Performance Requirements 

A. System Electrical Energy Requirements 

Subcontract to ESB, Inc. 

Delivery of first experiment01 battery 

Delivery of first developmental battery 

Delivery of first prototype battery 

Delivery of first flight battery 

First flight battery qualified 

First spacecraft launch (Surveyor I) 

Launch o f  Surveyor I1 

Launch o f  Surveyor 111 

Launch o f  Surveyor IV 

Launch o f  Surveyor V 

Launch o f  Surveyor VI 

VELOPMENTAL 

QUALITY PROGRAM 

FLIGHT 

Fig. 5. Program schedule 

electrical energy was provided primarily by a sun- 
oriented solar panel, but power during prelaunch, launch, 
transit, lunar nights and electrical peak loads was supplied 
by a secondary silver-zinc (rechargeable) battery. On 
Surueyo~s I-IV, additional peak load capability during 
transit and the lunar landing was furnished by an aux- 
iliary primary silver-zinc battery. 

The following information is supplementary to Table 2: 

(1) The main battery energy capacity is based on a 
2-A discharge rate, over a temperature range of 
70-125°F. 

(2) The base of the auxiliary battery energy capacity 
is explained in Section IX-C. 

(3) Unusable energy remaining at touchdown in the 
auxiliary battery is based on the desire to keep 
voltage on the flat portion of the discharge curve 

The system electrical energy requirements for the and on the uncertainty about actual battery 
Surveyor spacecraft are summarized in Table 2. The capacity. 
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Table 2. System electrical energy consumption, generation, and capacity values 

(4) Conversion between ampere-hours and watt-hours ature conditions are plotted in Fig. 6. The temperature 
is based on an average unregulated bus of 21.6 Vdc. graph shown was based on an electrical power subsys- 

tem containing two 150 A-h batteries, and with sufficient 
(5) In the event of an earth shadow eclipse of 1 h, the current drain to maintain a minimum battery tempera- 

usable battery energy remaining at  touchdown ture of 0°F. In actual practice, however, it was not 
will be reduced by a maximum of 100 W-h. possible to maintain a current drain at this level with 

Parameter 

In the event that the S w u e y o ~  TV vidicon heater 
is required to operate continuously throughout 
transit, the usable battery energy, remaining at 
touchdown will be reduced by a maximum of 
259 W-h for a 71-h transit. 

ired system energy, W-h 

Nominal 
Dispersion 

Net solar panel energy 
Nominal (71a ond 78 w b )  

Dispersion 
Solar intensity variation 

Net battery energy used through touchdown 
Nominal 

Dispersion 

Main battery energy 
Nominal 

Dispersion 

Auxiliary battery energy 

Nominal energy a t  activation 
Dispersion 

Loss of capacity after 10 days of activation 
(minimum launch window) 

Loss of capacity after additional 8 days of  

activation (maximum launch window) 
Unusable energy remaining a t  touchdown 

Usable battery energy remaining a t  touchdown 
Nominal (launch a t  first day of window) 

Total dispersion 

Minimum 

BSurveyor I ,  11, 111, ond IV .  

- 
the single main battery and consequently the battery 
was permitted to freeze. The minimum battery tempera- 
ture during the lunar night was estimated to be less 
than -150°F. Realistic lunar night survival tests were 
conducted to determine the performance of the main 
battery in a severe thermal environment. 

B. Battery Thermal Environment C .  Battery Electrical Performance Requirements 

Type approval requirements for flight model batteries 1.  Discharge capability. The specified output poten- 
are summarized in Table 3. The environmental temper- tial of the 14-cell battery, as measured on the load side 

bSurveyor V ,  V l ,  and V I I .  

CWithout auxiliary battery. 

7400 
+ 370 

4400 
+ 220 
2 154 

3000 
2430 

3450 
t 200 

1060 
2 60 

60 

85 

125 

1325 
+479 

607 
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Table 3. Mission power profile 

twelve times 

of the mating electrical connector, was 22 (+4.0, -4.5) V 
under all test conditions. The battery minimum discharge 
capacity was 2950 W-h when discharged in accordance 
with Table 3. 

2. Charge capability. The battery had to be capable 
of accepting charge for extended periods at levels rang- 
ing from 0.1 to 5.0 A. Charging was to be accomplished 
at maximum available potential of 27.30 (+0.00, 
-0.14) V. Float charging at a constant potential of 27.0 

($0.1, -0.0) V for a period of 85 h was not to result 
in battery internal pressure above 25 psia. 

3. Storage capability. The battery had to be capable 
of withstanding unactivated storage for a minimum of 
one year at temperatures between 40 and 100°F and 
a relative humidity not exceeding 50%. 

4. Operating life. The operating life of the battery 
had to be at least 120 days when operated in accordance 
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TIME 

Fig, 6. Battery ambient temperature profile 

with the specifications in Table 3. Operation beyond the 
250 h of the second lunar day was desirable, but not 
required. 

5. Changes in electrical requirements. Changing energy 
requirements caused revisions in the power profile. 
These changes are summarized in Table 4. Revisions B 
and D are not included in Table 4 since these were 
minor changes. 

D. Environmental Requirements 

1. Electrical performance during tests. The battery 
had to be discharged at a constant 7.0-A rate prior to, 
during, and after each test. During this discharge, the 
battery potential had to be between 17.5 and 26.0 V. At 
the conclusion of each test, the battery was discharged 
for at least 5.0 s using a 0.260 t0.020-0 resistive load. 

The battery potential had to be within the specified 
limits. 

2. Shock test requirement. The battery had to be 
capable of meeting the specified electrical requirements 
when subjected to shock simulating the environments 
to be encountered by the spacecraft during the descent 
phase. 

a. Thrust axis. The battery was subjected to four 5-ms, 
25-g, half-sine-wave shocks along the positive thrust 
axis. An acceptable substitute was a 4- to 6-ms terminal 
sawtooth shock of 40 g, repeated four times. 

b. Lateral axes. The battery was subjected to four 
(two in each direction), 5-ms, 15-g, half-sine-wave shocks 
along each of two orthogonal axes perpendicular to the 
thrust axis. An acceptable substitute was a 4- to 6-ms 
terminal sawtooth shock of 24 g, repeated four times. 

3. Acceleration test requirement. The battery had to 
be capable of meeting the specified electrical require- 
ments when subjected to acceleration simulating the 
quasi-steady state acceleration encountered by the space- 
craft during the Atlas, Centaur, and retroengine burning 
phases. 

Significant accelerations were to be produced in the 
thrust axis only. Accelerations in the lateral axes were 
considered negligible. The battery was subjected to 

Table 4. Changes in power profile 

2650 W-h, 121 A-h 

Constant current 0.1 -2 A a t  
28 V maximum 

130°F maximum 

56 days minimum, 120 120 days minimum 

47.5 Ib maximum 46 Ib maximum 46.5 Ib maximum 
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steady-state accelerations of 10 g for 4 min and 5 g for 
7 min along the thrust axis. 

4. Vibration test requirement. The battery had to be 
capable of meeting the specified electrical requirements 
when subjected to the specified vibration level with the 
battery firmly attached to a vibration exciter without 
attempt to simulate the spacecraft installation. The bat- 
tery was loaded in such a manner as to make it dynam- 
ically similar to the flight configuration. The vibration 
level was to be observed on the exciter positioned as 
near the supporting bracket as possible. 

The battery was subjected to vibration tests in a direc- 
tion essentially parallel to the thrust axis and in two 
critical orthogonal directions perpendicular to the thrust 
axis. 

a.  Provisions. The vibration test levels in Figs. 7-9 rep- 
resent the mechanical inputs at the attachment of the 
battery to the supporting substructure of the spaceframe. 

b. Test levels. The test levels of Figs. 7-9 represent 
vibration level, frequency range, sequence, and dura- 

tions that were applied to the battery under test. Measure- 
ments were taken in the spacecraft thrust and lateral 
axes directions, either at the supports to the spacecraft 
structure, or at the specified interface. 

c. Test description. Each battery was subjected to 
vibration test levels based upon the overall test levels, 
frequency ranges, sequences, and the durations specified 
in the preceding paragraph. The frequency ranges that 
followed were modified to reflect the actual funda- 
mental resonant frequencies existing within the battery. 
These frequencies did not have to be lower than one-half 
of the first fundamental resonance frequency observed. 
The test consisted of a variable frequency sine-wave 
(VFSW), logarithmically swept over the specified fre- 
quency range, a band-limited random vibration of uni- 
form spectral density, and gaussian instantaneous 
amplitude distribution with the specified frequency band 
-white gaussian acceleration (WGA). A logarithmic 
sweep is defined as a change in frequency, either in an 
increasing, or decreasing, direction over the specified 
frequency range in a uniform time span, where the rate 
of change of frequency is directly proportional to the 
instantaneous frequency. That is, the sweep rate had to 

Fig. 7. Type approval, vibration test program 
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FREQUENCY, Hz 

Fig. 8. Type approval, vibration test program, main retroengine 

be a constant number, or fraction of an octave, per uni- 
form time period. 

The vibration tests of the battery were based upon the 
sequence of environmental levels given in the subse- 
quent paragraphs for each of the specified orthogonal 
directions. One orthogonal axis is defined as the axis 
essentially parallel with the spacecraft thrust axis. The 
lateral orthogonal axes included at least one other critical 
axis. The total time in each orthogonal direction was 
12 min for a total vibration test time on the battery 
of 36 min. 

d. Test sequence. The battery was subjected to one 
increasing frequency sweep of 2 min at the VFSW level 
and frequency range as specified in Figs. 7 or 9, or the 
detail specification combined with random vibration 
WGA of 4.5-g rms acceleration band limited between 
100 and 1500 Hz. 

The battery was then subjected to either, one increas- 
ing and one decreasing frequency sweep of 5 min each, 
or five increasing and decreasing frequency sweeps 
of 2 min each at the VFSW levels and the frequency 
range specified in Figs. 7 or 9. The detail specification 

requirements could also be used, combined with random 
vibration WGA of 2.0-g rms acceleration band limited 
between 100 and 1500 Hz. 

e. Standnrd complex wave test tape. The complex 
wave, specified in the description, could be executed by 
means of magnetic recording tape. The signal recorded 
on the tape had to have the characteristics noted in 
Figs. 7, 8, or 9. The VFSW had to be combined with 
the WGA as follows: 

rms g (WGA2 + VFSW2)= 

where all g values are rms. 

f .  Random ~zoise. For creating the random noise WGA, 
the output of a random noise generator, General Radio 
Model 1390-A or its equivalent could be used if proper 
care was taken to ensure the correct amplitude distribu- 
tion of the signal. For ensuring correct noise bandwidth, 
a filter with an asymptotic slope, of at least 24 dB per 
octave and 3-dB points at 100 and 1500 Hz, was con- 
sidered acceptable. 
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FREQUENCY, Hz 

Fig. 9. Type approval, vibration test program, total spacecraft 

Ill. Experimental Model Surveyor Main Battery 

A. Description 

The experimental model Szaveyor main battery con- 
sisted of 14, sealed, silver-zinc cells connected in series. 
The capacity was approximately 150 A-h. The output 
potential was 22 -i.4 V at an ambient temperature of 
70°F. The battery weight was 46.0 Ib, except for the 
four batteries that were equipped with pressure gages 
on each cell for monitoring the cell pressures during 
tests. Batteries X1-X4 are shown in Fig. 10. The pressure 
gage-equipped batteries, X5-X8, are shown in Fig. 11. 

Structural details of the cells are given in Figs. 12-15. 
The cell characteristics are summarized in Table 5. Cells 
were located in two- and five-cell containers (Fig. 16). 
One two-cell and one five-cell monoblock were joined 
to form a seven-cell unit. A pair of seven-cell units was 
combined to form the battery (Fig. 17). The battery was 
placed in a magnesium canister for strength and mount- 
ability. Figure 10 shows a battery installed in a canister. 

The temperature of the batteries and monoblocks was 
measured with thermistors, positioned as shown in Fig. 17. 

1 .  Negative plates. The negative plates consisted of 
active material pressed onto a silver grid, as illustrated 
in Fig. 13. The active material mix also contained a 
binder3 and mercuric oxide. 

2. Positive plates. The positive plates, illustrated in 
Fig. 14, contained active material that was pressed onto 
a silver grid and a binder3 that was destroyed by subse- 
quent sintering. 

3. Separators. The separator system (Fig. 15) con- 
sisted of six layers. Synpor, with its relatively high 
resistance to attack by silver oxide, and its ability to 
permit permeation of electrolyte by virtue of a fairly open 
structure, was the material used in contact with the silver 

3ESB, Inc. proprietary materials. See appendix for listing of material 
n~anufacturers. 
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Fig. 10. Surveyor experimental model battery 

Fig. 1 1. Pressure gage-equipped Surveyor 
experimental model battery 

electrode. The next layer was Polypor, which had dem- 
onstrated its ability to resist penetration by silver oxide. 
The final four layers were cellophane, which has limited 
resistance to silver oxide, but resists zinc treeing and 
permits a relatively free flow of electrolyte ions. 

Table 5. Physical characteristics of Surveyor 
experimental model cell 

Total plate area, in.2 

Silver per cell, Ib 

Active material density, Ib/in.3 

Number o f  plates 

Center plate thickness, in. 

End plate thickness, in. 

Number of center negatives/cell 

Number of end negatives/cell 

Zinc-oxide per cell, Ib 

Active material density, Ib/in.3 

Active plate orea, in.2 

Amount per cell, in.3 

Number of layers 

Number o f  layers 

193 PUDO Cellophane 

Number of layers 

Free space ratio for cellophane 

Ratio o f  positive 

Capacity to negative 

Capacity theoretical 
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NEGATIVE 
ASSEMBLY, END 

Fig. 12. View of positive and negative assembly- 
experimental cell 

4.  Electrolyte. The electrolyte in the battery was an 
aqueous solution of 40% potassium hydroxide, saturated 
with zinc oxide. 

The ratio of active negative material to active positive 
material was optimized to minimize gas pressure buildup 
during charge. 

B. Tests on Cells and Monoblocks 

This subsection describes performance tests using ex- 
perimental model cells and monoblocks. 

1.  Charge tests. The charge tests were performed to 
determine the charge characteristics of experimental 

NEGATIVE 
GRlD ASSEMBLY 

FOLD l J  L F o L D  3 

FOLDING INSTRUCTIONS 
(NOTE - CENTER GRlD 
O N  RETAINER) 

Fig. 13. Negative assembly-experimental cell 

I 

*O .06 

I 
7- 
fO.06 

0.046 f0.005 DlAM 

POSITIVE 
ACTIVE 
MATERIAL 

0.125 RADIUS 

3.125 -4 0 . 0 7 2 4  

DIMENSIONS I N  INCHES 

Fig. 14. Positive plate assembly-experimental cell 
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SEPARATOR 
(PO LY PO R) 

SEPARATOR 

SEPARATOR (CELLOPHANE) 

(SYNPOR) -7 

POSITIVE FOLD (VIEW SHOWN 
PULLED OUT FOR CLARITY) " 2 

0 ? ?  7 

RATOR TOP EDGES TO 
ALIGNED WITHIN 0.06 in. 

SEPARATOR TOP EDGES TO 
BE ALIGNED WITHIN 0.06 in. 

POSITIVE 
PLATE WRAP 

DIMENSIONS I N  
INCHES 

Fig. 15. Details concerning positive plate wrap 

Fig. 16. Side view of five-cell container for 
experimental model battery 

cells over a wide range of charge rates and battery 
temperatures. 

a. Procedure. The charge test procedure involved 
discharging three-cell monoblocks at the 7 A rate to 
3.75 V (1.25 V-cell), and charging at 0.1, 1.0, 3.0, and 

TRANSDUCER lV TRANSDUCER V 
(REFERENCE) /- (REFERENCE) 

RANSDUCER It1 

ALL TRANSDUCERS ARE 
TEMPERATURE SENSORS 

E c m E N T  M o N o B L o c I s  
TO PARTITION 

Fig. 17. Assembly of monoblocks in experimental 
model battery 

5.0 A and 0, 30, 60, 90, and 125°F to a maximum cell 
pressure of 40 psig and a range of cutoff voltages. 

b. Results. The results of the charge tests are pre- 
sented in a series of graphs and a table. Figure 18 shows 
a typical charge curve, in which the end of charge is 
indicated by a sharp rise in potential and internal cell 
pressure. Owing to the possibility of cell rupture and in 
keeping with the requirement to minimize weight, a 
maximum cell pressure of 40 psig has been adopted. The 
onset of gas pressure buildup is a function of tempera- 
ture and charge rate, as indicated in Table 6. The attain- 
able charge input as a function of charge rate and cutoff 
potential is summarized for the test temperatures in 
Figs. 18-23. The discharge capacity (70°F) after charg- 
ing at selected temperatures is indicated in Figs. 24 and 
25. A thorough discussion of the voltage surge (at 70 h of 
charge) in Fig. 18 appears in subsections 111-E-3, 111-F-4, 
and 111-F-5. 

Table 6. Voltage at start of gassing 
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Fig. 18. Charge characteristics of experimental 
three-cell monoblock for 1 -A charge at 40°F 

0 40 80 120 160 200 

TIME, h 

240 

200 

160 

Fig. 20. Charge input vs cutoff voltage for several charg- 
ing rates at 30°F for experimental three-cell monoblock 

40 

3.0 

CUTOFF POTENTIAL, V 

Fig. 19. Charge input vs cutoff voltage for several charg- 
ing rates at O°F for experimental three-cell monoblock 

1.94 1 .98 2.02 2.06 2.10 

CUTOFF POTENTIAL, V 

CUTOFF POTENTIAL, V 

1 .O A N D  5.0 A 

LOO 

Fig. 21. Charge input vs cutoff voltage for several charg- 
ing rates at 60°F for experimental three-cell monoblock 

r- 
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120 1 I I I I 
1.94 1.98 2.02 2.06 2.10 

CUTOFF POTENTIAL, V 

Fig. 22. Charge input vs cutoff voltage for several charg- 
ing rates at 90°F for experimental three-cell monoblock 

CUTOFF POTENTIAL O N  
CHARGE: 2.15 V 

40 
0 1 2 3 4 5 

CHARGE RATE, A 

Fig. 24. Discharge capacity vs charge rate after charge to 
40 psig at several temperatures for experimental three- 
cell monoblock 

80 1 I I I I 
1.94 1 .98 2.02 2.06 2.10 

CUTOFF POTENTIAL, V 

Fig. 23. Charge input vs cutoff voltage for several charg- 
ing rates at 125 O F  for experimental three-cell monoblock 

c. Concltlsions. Charge tests on experimental model 
cells and monoblocks yielded the following conclusions: 

(1) Charge input can be increased by charging at a 
lower rate or charging to a higher cutoff potential. 

(2) Cutoff potential and charge rate have a much 
greater effect on charge input at low temperatures 
than above 70°F. 

(3) The gas pressure buildup starting at approximately 
1.96 V and above, resulted in recommendations to 
limit charging to this potential at a temperature 

I I CUTOFF POTENTIAL O N  I DISCHARGE RATE: 7.0 A AT 70°F 

0 40 80 120 160 

TEMPERATURE, OF 

40 

Fig. 25. Discharge capacity vs temperature after charge 
to 40 psig at several charging rates for experimental 
three-cell monoblock 

CHARGE: 2.15 V 

above 30°F. Charging at a lower temperature re- 
quires a higher potential that would lead to unsafe 
conditions at higher temperatures because of exces- 
sive pressure buildup. 
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2. Stand loss for charged storage. Discharge tests 
were conducted on experimental cells to determine the 
stand loss in charged cells. 

a. Procedztre. The discharge test procedure involved 
placing cells equipped with pressure gages in a con- 
trolled temperature environment, measuring the open 
circuit potential, and discharging the cells at the 7.0-A 
rate to a cutoff potential of 1.25 V. 

I?. Results and conclusions. Results of the stand loss 
test on initially charged cells are expressed in terms of 
capacity retention in Fig. 26 with equilibrium cell 
pressures shown in Fig. 27. The stand loss data nearly 
fits the equation 

K =  2.303 (log C, - log C,) 
t 

where 

K = a rate constant 

C ,  = capacity at time = 0, % 

C, = capacity at time = t, % 

t = storage time, mo 

2 4 

STORAGE TIME, mo 

STORAGE TEMPERATURE, O F  

Fig. 27. Cell pressure during charged storage vs 
temperature for experimental cells 

Calculated capacity loss rates for experimental cells and 
a commercially available high rate cell are plotted in 
Fig. 28. The nonlinearity of the plot for the experimental 
cell may be due to the surface-controlled nature of the 
discharge reaction, contrasted to the linear plot for 
the high-rate (thin-plate) cell". 

Voltage degradation during charged storage was rather 
low and independent of temperature, as shown by the 
data in Table 7. Inasmuch as losses in capacity and 
potential are very low at low temperatures, storage 
below 60 O F  was recommended. 

3. Stand loss for discharged storage. This discharge 
test was accomplished to determine the stand loss in 
experimental model cells during discharged storage. 

a. Test procedure. The test procedure involved: (1) 
storing the charged cells for 26 days; (2) discharging the 
cells at 7.0 A to a 1.25-V cutoff to determine cell capacity; 
(3) storing the cells for 60, 180, and 365 days at 30 and 
90°F; (4) charging the cells after storage at 2.0 A to a 
1.96-V cutoff; and (5) discharging the cells at 7.0 A to 
a cutoff of 1.25 V to redetermine the cell capacity. 

Fig. 26. Capacity retention vs storage Peratu re for 'Personal communication from J. J. Rowlette, Hughes Aircraft Con,- 
charged storage of experimental cells pany, Culver City, Calif. 
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50 Table 7. Discharge voltage at 7 A for charged stand 

20 \ 

a considerable variability in discharged stand loss, but 
a significantly larger stand loss for long term storage at 
90°F is apparent. The variability in these results caused 
ESB to recommend that all long term storage be con- 
ducted in the charged state. 

4. Direct current impedance test. The dc impedance 
test was performed to determine the dc impedance of 
the experimental cell, when being discharged on the 
lower voltage plateau. 

STORAGE TEMPERATURE, O F  

I I I I 
2.9 3.1 3 . 3  3.5 

TEMPERATURE, O K  x 1'22 1.0 

Fig. 28. Effect of charged stand temperature on o 20 40 60 80 100 

capacity loss rate for experimental cells DISCHARGE CURRENT, A 

Fig. 29. Plot of cell potential as a function of the dis- 
b. Results and conclusions. Results of the discharge charge rate and environmental temperature for experi- 

storage test are summarized in Table 8. The data indicate mental model cell 
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Table 8. Discharged stand test 

a. Test procedure. The test procedure consisted of: b. Results and conclu&ons. The results of the dis- 
(1) charging the cells at room temperature at the 2.0-A charge runs are shown in Fig. 29. Slopes of curves in 
rate to a 1.96-V cutoff; (2) permitting the cells to sta- Fig. 29 yielded the dc impedance data, plotted in Fig. 30. 
bilize at the test temperature for 1 day; and (3) discharg- 
ing the cells at the following rates: 

Rate, A Time, h 

At some combinations of temperature and current, the 
cells did not suppol-t the desired load long enough to 
determine a stable potential. From the data, the dc 
impedance was to be calculated by the slope of the 
voltage-current curve (slope = AV/AI). 

TEMPERATURE, OF 

Fig. 30. Direct current impedance vs temperature for 
several discharge rates for experimental cells 
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There is considerable doubt concerning the validity of 
the low temperature data because electrode tempera- 
tures will change rapidly when high currents are drawn 
as indicated in tests with thermocouple-equipped bat- 
teries (Section VI). The dc impedance data in general 
should be used with caution when attempting to calcu- 
late cell potentials, as the latter are also a function of 
cell history, state of charge, and duration of the applied 
discharge current. 

C. Mission Simulation Tests 

This subsection describes mission simulation tests that 
were performed with experimental model cells and 
monoblocks. The tests were limited to simulation of parts 
of lunar day 1, the full lunar night power profile, and 
parts of lunar day 2. 

1. Simulation of lunar day 1.  The simulation of lunar 
day 1 test was an examination of the performance of a 
five-cell experimental model monoblock. 

a. Procedure. The test procedure involved a series of 
charge-discharge cycles at temperatures from 30-7S°F, 
charging for 1.05.0 h at 1.0, 3.0, and 5.0 A, and discharg- 
ing for 0.25-0.75 h at the 16.0-A rate. The test schedule 
is shown in Table 9. In addition, a series of 50-ms, 40-A 
discharge pulses were applied to simulate the pulse loads 
(see Fig. 36). 

Table 9. Program for simulation test of lunar day 1 
by a five-cell experimental model monoblock 

b. Results and concluswns. Results of the simulation 
of lunar day 1 are presented in Figs. 31-36. Except for 
the pulse discharge, the monoblock met requirements. 
The average minimum cell potential, resulting from a 
50-ms, 40-A discharge at an environmental temperature 
of 30°F was 1.185 V. This potential is equivalent to a 
battery potential of 16.6 V, which is below the minimum 
acceptable value of 17.S5 V. Therefore, an increase in 
cell capacity by 10% was indicated. 

2. Lunar night simuhtion. The lunar night simulation 
test was run on a five-cell experimental monoblock to 
determine if the experimental model battery was capable 
of fulfilling the requirements for lunar night performance. 

518.0 V in early specifications. 

'.4991 RUN 9, 0.25 h AT 16 A AND 75°F 

0 4 8 12 16 

DISCHARGE TIME, rnin 

Fig. 31. Discharge curves, five-cell experimental 
monoblock-simulation test of lunar day 1 
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CHARGE TIME, h 

Fig. 32. Experimental model charge curves, experimental 
model five-cell monoblock-runs 2 and 4-simulation 
of lunar day 1 

a. Procedure. The test procedure is summarized in 
Table 10. The observed voltages during the third cycle 
have been entered for comparison. 

b. Results an.d conclusions. The results, plotted in 
Fig. 37, indicate that discharge of 118.9 A-h would re- 
sult in a battery potential of approximately 16.8 V; this 

Table 10. Lunar night simulation test plan 

Accumulated 

potential is below the minimum permissible level of 17.5 V. 
Retention of the loads, therefore made it necessary to 
increase the battery capacity by approximately 10% in 
the development model. A similar increase was recom- 
mended as a result of tests simulating the first lunar day. 

D. Test Program on Experimental Model Surveyor 
Main Battery 

1.  Types of tests. The objective of the test program 
for the experimental model Survegor battery was to verify 
the basic soundness of the battery selected for use in the 
Surveyor spacecraft. 

The tests comprising this phase of the program were: 

(1) General inspection test and receiving procedure. 

(2) Initial capacity test. 

(3) Dynamic charge surge and internal impedance 
test. 

(4) Charge matrix test. 

(5) Cycle life test. 

(6) Magnetometer survey. 

Fig. 33. Charge curves, experimental model five-cell 
monoblock-runs 6 and 8---simulation of lunar day 1 
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CHARGE TIME, h (FOR RUN 12) 

CHARGE TIME, h (FOR RUN 10) RECHARGE TIME, h 

Fig. 34. Charge curves, experimental model five-cell 
monoblock-runs 10 and 12-simulation of lunar day 1 

2. General inspection test and receiving procedure. 
The general inspection test and receiving procedure was 
performed to detect defects in performance, workman- 
ship, and general quality of the experimental model 
Surveyor battery. 

a. Procedzwe. The test procedure included: (1) inspec- 
tion for visible defects and general quality of workman- 
ship; (2) measurement of battery open circuit potential 
and cell open circuit potential; (3) measurement of in- 
sulation resistance between each external terminal of the 
battery connector and the battery case with a 500-Vdc 
potential; and (4) determination of battery weight and 
battery dimensions. 

b. Results. The results of the tests performed on all 
eight experimental model Sztrvezjor batteries are pre- 
sented in Table 11. 

3. Initial capacity test. The purpose of this test was 
the deternlination of battery capacity by performing a 
discharge-charge cycle. 

Fig. 35. Charge curves, experimental model five-cell 
monoblock-run 14-simulation of lunar day 1 

TIME, s 

Fig. 36. Average cell potential of fully charged experi- 
mental model five-cell monoblock after a 50-ms, 40-A 
pulse at 30°F 

a. P,rocedure. The test procedure consisted of: (1) dis- 
charging the factory-charged battery a t  the 7.0-A rate 
to a cutoff potential of 17.5 V; (2) charging the battery 
at the 2.0-A rate to a potential of 27.3 V at an ambient 
temperature of 70°F; and (3) applying a topping charge 
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DISCHARGE TIME, h 

Fig. 37. Simulated lunar night discharge of five-cell experimental model monoblock 

Characteristic 

Cell open circuit potential 1.856 - 1.885 V 

7.240 - 7.265 in. 

6.700 - 6.720 in. 

Cell pressure (as received) 

51.600 - 51.990 Ib 

of 1.0 A to a potential of 27.3 V at the same ambient b. Restilts and conclzrsions. The results of the initial 
temperature. In several cases, the 1.0-A charge was capacity test are summarized in Table 12. The initial 
omitted. Testing of batteries X5-X8 further included discharge efficiency of the batteries ranged from 88.0% 
observation of cell pressures by means of attached to 98.0% with an overall average for the eight batteries 
Bourdon gages. of 93.5%. On recharge at HAC, a relatively large charge 

input at 1.0 A was required for two of the batteries to 
restore the charge input to an acceptable level. Owing 

Table 11.  Results of general inspection test and receiv- to the far lower polarization of the electrodes at low 
ing procedure of experimental model batteries charge rates, charging at low charge rates will generally 

permit the attainment of a higher state of charge. Typical 
discharge and recharge curves are shown in Figs. 
38 and 39. The discharge capacity of the batteries 
(147.0-158.5 A-h) is marginal at ambient temperature 
and insufficient to meet low temperature power demands. 

- 

The maximum observed pressure during the test was 
36 psig. Pressure variations between cells and batteries 
were appreciable. 

4. Dt~nanzic charge surge and internal impedance test. 
The dynamic charge surge and internal impedance test 
served to establish the transient response of the battery 
as a function of the charge rate at various states of 
charge and temperatures. 
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Table 12. Results of initial capacity test on experimental model batteries 

charged in the preceding charge. The test was conducted 
at ambient temperature in the laboratory. 

b. Results and conclusions. Results of the test are 
shown in Figs. 40 and 41. Briefly, the data indicate: 
(1) a correlation exists between duration of the charge 
surge and the charge rate, and (2) a correlation exists 
between maximum transient potential and the charge 
rate. A detailed discussion of this subject is included in 
Subsections 111-E-3 through 111-F-5. 

TIME. h 

5. Charge matrix test. The charge matrix test was per- 
Fig. 38. Discharge characteristics of experimental bat- formed to determine the charge characteristics of the 

tery X-4 at ambient temperature and constant current experimental model Suroeyor battery at various charge 
rates and environmental temperatures. 

28 

a. Test procedure. The test procedure consisted of 
> . 26 charging the battery to a 27.3-V cutoff at environmental 
_I 

5 
I- 

temperatures of 0 and 70°F, and at rates of 2.0, 5.0, 
2 and 0.5 A, and discharging the battery at the 7.0-A 
+ 24 B rate to a 17.5-V cutoff between charges at the environ- 
k mental charge temperature. 
E 22 

b. Results and conclusions. Charging potential-time 
20 o 5 12 24 36 48 60 72 84 96 curves are plotted in Fig. 42 and cell pressure data in 

TIME, h 
Fig. 43. The data permit the following conclusions: 

Fig. 39. Charge characteristics of experimental model 
(1) Charge input is a function of temperature (larger 

battery X-4 at ambient temperature and constant current 
at 70°F than at O°F). 

(2) Charge input is an inverse function of the charge 

a. Test procedure. The test procedure consisted of rate (larger at low rates). 

charging the battery in sequence at 5.0, 4.0, 3.0, 2.0, and (3) charging occurs on two plateaus, 
1.0 A with charge termination each time when the 
potential stabilized. Following each charge, the battery (4) Cell pressures during high rate charging can be 
was discharged to withdraw the number of ampere-hours, high and out of balance (5-A data). 
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DURATION OF SURGE VOLTAGE, min PEAK POTENTIAL, V 

Fig. 40. Duration of voltage transient vs charging current Fig. 41. Maximum charge (transient) voltage vs charging 
at 82.8"F for experimental battery X-4 current at  82.8"F for experimental battery X-4 

TIME, h 

Fig. 42. Results of charge matrix test on experimental model battery 

6. Discharge matrix test. The discharge matrix test lowing rates (at temperatures of 0, 70, and 125OF): 0.5, 
was designed to determine the constant current discharge 2.0, 10.0, and 20.0 A to a 17.5-V cutoff. The battery was 
characteristics of the experimental model Szcrueyor bat- charged at the 2.0-A rate to a 27.3-V cutoff at 70°F 
tery at various discharge rates and environmental tem- between each of the discharges. When required by 
peratures. battery characteristics, certain discharges were omitted. 

a. Test p~ocedure. The test procedure consisted of b. Results and conclusions. Discharge potential-time 
discharging the fully-charged battery at  each of the fol- curves are plotted in Fig. 44, battery temperature data 
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CELL NO. 

Fig. 43. Typical cell pressure data, obtained during charging of experimental model battery 

TIME, h 

Fig. 44. Results of discharge matrix test on experimental model battery 
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the separator with resultant cell failure (e.g., 20-A 
discharge rate in a 70°F environment caused the 
battery temperature to reach 130°F). 

(3) The battery potential is an inverse function of 
the discharge rate (potential is lower at high dis- 
charge rates). 

Fig. 45. Maximum increase in battery temperature above 
environmental temperature during discharge matrix test 
of experimental model battery 

(4) The battery potential is a function of the battery 
temperature (potential is lower at lower temper- 
atures). 

(5) The battery watt-hour capacity is proportional to 
the battery temperature (capacity is lower at low 
temperatures). 

(6) The battery watt-hour capacity is an inverse 
function of the discharge rate (capacity is lower 
at high discharge rates). 

7. Cycle life test. The cycle life test was to be accom- 

in Fig. 45, and watt-hour capacity data in Fig. 46. The 
results yield the following conclusions: 

I 5 10 

(1) Discharge of the silver-zinc couple takes place on 
two plateaus and this two-step discharge is most 
prominent at low discharge rates, becoming al- 
most unobservable at high rates (0.5 vs 20 A). 

(2) High discharge rates cause a large increase in 
battery temperature that may ultimately damage 

DISCHARGE CURRENT, A ditions. 
15 20 

a.  Test procedure. This test was performed by JPL. 
The test procedure consisted of: (1) fixing the magnetom- 
eter sensor, with the axis along which the field is sensed, 
in the horizontal plane; (2) adjusting the magnetometer 
to read zero field; and (3) bringing the battery to a dis- 
tance of 3.0 ft from the magnetometer sensor, rotating it 
about a vertical axis through the approximate geometric 
center of the battery, and recording maximum values of 
the indicated magnetic field. 

plished to determine the number of discharge-charge 
cycles that the experimental model Surveyor battery can 
survive under a set of simulated conditions. 

a. Test procedure. The test procedure consisted of 
repetitive discharge-charge cycles involving discharge 
at 7.0 A to 17.5 V and charge at 2.0 A to a 27.3-V cutoff. 
The test was performed at laboratory ambient temper- 
ature. 

b. Results. No results were obtained. Because of prior 
battery failures, batteries were not available for this test. 

8. Magnetometer survey. The purpose of the mag- 
netometer survey was the determination of the dc 
magnetic field at a distance from the experimental model 
Suroeyor battery, when operating under typical con- 

Z?. Results and co~zclusions. The results of this JPL- 
conducted test, summarized in Table 13, indicated com- 
pliance with the battery requirements. 
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BATTERY CAPACITY, W-h 

Fig. 46. Effect of battery temperature and discharge rate on watt-hour capacity 
of experimental model Surveyor main battery 

Table 13. Magnetometer survey data 2. Failure of cells b y  cracking of cell cases. The 
cracking of the cell cases, and consequent shorting of 
cells, during tests at temperature extremes of 0-12S°F, 
was caused by the difference in the thermal expansion 
rates of the magnesium battery canister and the poly- 
styrene cell cases. 

E. Failure Analysis 

The test program for the experimental model Survegor 
battery, its component cells, and monoblocks revealed 
a number of deficiencies that resulted in: (1) shorted 
cells, (2) cracked cell cases, and (3) premature charge 
termination because of a voltage surge. 

1. Failure of cells b y  shorting. The cause of shorted 
cells in most cases was cell plate contact resulting from 
the tearing of tightly wrapped separator material. 

Correction for this deficiency consisted of using addi- 
tional separator material, allowing more generous folds 
to be made, during assembly. 

This deficiency was corrected by inhibiting the poly- 
styrene cell case surfaces during potting by application 
of silicone grease, so that the mechanical bond of the 
epoxy to the cell cases was eliminated. 

3. Premature charge termination. Premature charge 
termination that was caused by voltage surge is treated 
in detail in Subsection 111-F-4. 

Correction of this deficiency was deferred to the pro- 
totype battery phase. In the interim, a temporary increase 
in charge cutoff voltage to 29.0 V was recommended 
during the surge period, while monitoring the battery 
potential until it drops below 27.3 V. At that time the 
automatic voltage cutoff was reset to 27.3 V. Approaches 
under consideration included: (1) internal modification 
of the battery to eliminate the tendency to produce 
voltage surges; (2) modification of the battery charging 
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system to include some means of discriminating be- 
tween the transient voltage surges and the final increase 
in battery potential that is indicative of the need to 
terminate the charge; (3) charging the battery at a con- 
stant potential in contrast to the constant current mode 
that was employed with the experime~ltal model Surveyor 
battery (in constant potential charging, the current would 
reduce to the trickle level as the battery attains a fully 
charged state); and (4) redesigning the battery so that 
it can be overcharged without damage (e.g., use of a 
common manifold). The ultimate solution, adopted in 
the prototype model Surveyor battery, consisted of a 
manifold battery and constant power charging with 
limiting potential. 

F. Battery Development 

This subsection deals with work performed to optimize 
certain design parameters, and with some peripheral 
matters, such as, battery sterilization. 

1. Density variations in negative active material 
(negative electrode). X-ray studies were performed by 
ESB on negative plates without grids in an attempt to 
determine variations in the density of active material. 
No variations were detectable. The sensitivity of the 
technique was then established by fabrication and test- 
ing of negative plates that were 20% too dense and 
20% below standard density. These &20% variations 
were detectable by radiography. It was therefore con- 
cluded that the negative plates had density variations of 
less than 20% from the standard density. 

2. Density variations in positive active material (pos- 
itive electrode). Density variations in active positive 
material were determined by weight-volume measure- 
ments on punchings, using specially made gridless plates. 
The average plate density was calculated to be 0.170 
k0.0023 1b/in.3 (where the deviation represents fo). 

where 

R = number of intervals 

= average plate density 

X i  = midpoint of interval i 

F i  = frequency of observations in interval i 

N = number of observations 

AVERAGE PLATE DENSITY = 0.170 ~ b / i n . ~  

STANDARD DEVIATION = 0.0023 ~ b / i n . ~  

TOTAL SAMPLE = 63 

NUMBER O F  PLATES = 13 

NUMBER OF SAMPLES/PLATE = 5 EXCEPT FOR 
ONE PLATE 

0.154 0.166 0.178 

POSITIVE PLATE DENSITY, ~ b / i n . ~  

Fig. 47. Density distribution in active material for 
positive plates of experimental model cells 

The density distribution, as determined by these measure- 
ments, is illustrated in Fig. 47. The small samplings and 
the fact that the material was not typical production 
line output make it difficult to pass a judgment concern- 
ing the uniformity of positive plate material in batteries. 

3. Eflect of positive plate density on electrode per- 
formance. In order to determine if the positive plate 
efficiency is higher at densities exceeding 0.172 lb/in.3, 
positive plates of a number of densities were prepared 
and subjected to charge-discharge steps. Figure 48 
shows the results obtained when charging electrodes at a 
2.0-A rate, at the 2.0-A rate with subsequent 1.0-A 
charge, and when discharged at the 10.0-A rate. The 
data indicate a decrease in efficiency at higher positive 
plate densities; thus, the density was maintained at the 
standard (0.172 Ib/in.3 level). 

4. Dynamic charge surge tests. During the charging 
of silver-zinc cells, a transient voltage pulse was fre- 
quently observed (see Fig. 18) when the cell potential 
changed from the Ag,O level (1.60-1.65 V) to the Ag,O 
level (1.86-1.93 V) and when an interrupted charge on 
the Ag,O level was resumed. This transient could be of 
sufficient magnitude to cause premature charge termina- 
tion when a battery or cell was charged in the constant 

IPL TECHNICAL MEMORANDUM 33-432 



LUU 

r% W 

3 - 
V) ". 
0 
9 150 
3 

I! 
1 
4 
+- 
2 
I- 

$ 100 

8 
C 

2 
Z 

VALUE SELECTED FOR 
EXPERIMENTAL MODEL 

CURRENT, A SURVEYOR BATTERY 
CHARGE TO 1.96 V/CELL 
DISCHARGE TO 1.25 V/CELL 

0.13 0.15 0.17 0.19 0.21 

POSlTlVE PLATE DENSITY, ~ b / i n . ~  

Fig. 48. Positive plate density test with special 
experimental cells 

current mode to a fixed end-of-charge potential. The 
characteristics of this dynamic charge surge and poten- 
tial remedies for it were investigated by ESB with 
results as indicated in the subsequent paragraphs. 

a. Dtsratiolz of surge 2js charge rate. A plot showing 
the effect of the charge rate on the duration of the 
surge was prepared on the basis of tests with an experi- 
mental model battery (see Fig. 40). 

I?. Magn.itzrde of surge potential vs  clzarge rate. The 
relation between the maximum surge potential and the 
charging rate for an experimental model battery has 
been previously presented (see Fig. 41). 

c. Temperature dependence of c l z a ~ e  surge. The tem- 
perature dependence of the charge surge, as determined 
by a test with a five-cell experimental model monoblock, 
is illustrated by Fig. 49. 

d. Co~zclusions based on tlze tests. The conclusions 
were as follows: 

(1) The surge is greater at low temperatures, reaching 
a negligible level at temperatures in the vicinity 
of 70°F and above. 

(2) The surge is proportional to the charge rate. 

(3) The duration of the surge shows a trend toward 
shorter times at higher charge rates. 

5. Causes nnd potelztial remedies for charge surge. 
In preceding paragraphs, a number of phenomenological 

TEMPERATURE, OF 

Fig. 49. Peak voltage of initial transient during 1 -A 
charge of five-cell monoblock experimental battery 

aspects of the charge surge have been presented. This 
subsection provides information concerning the theory 
of the surge and possible schemes for its elimination. 

a. Theory of the charge surge. One theory has indi- 
cated that the charge surge is caused by an increase in 
positive plate resistance due to a coating of nonconduct- 
ing Ag,O on the silver powder. I t  was then concluded 
that a low resistance shunt through the Ag,O coating 
should eliminate the surge. This appears to be incorrect 
in view of the following statement from Ref. 1: 

The mechanism responsible for the peak in the an- 
odization curve of Ag in KOH solution at the be- 
ginning of the Ago step is due to passivation, 
forcing the currents to small areas and producing a 
high overvoltage. It  is not due directly to an ohmic 
resistance. 

Reference 1 makes mention of the incorporation of a 
special inert conductive matrix in the positive material 
with the function of making electrical contact with indi- 
vidual Ago particles, thus minimizing the passivation 
due to the Ag,O. In any case, the ESB Missile Battery 
Division's work proceeded on the basis of seeking a low 

30 J P L  TECHNICAL MEMORANDUM 33-432 



resistance shunt through the Ag,O coating as a means 
for eliminating the charge surge. 

b. Elimination of charge surge by positive plate modi- 
fication. A number of low resistance materials were 
incorporated in positive plates as additives. On the basis 
of their low gassing rate during stand and their ability 
to withstand sintering temperatures, the following addi- 
tives were tested: graphite, nickel, cadmium oxide, and 
lead oxide. The evolution of gas during charged stand 
from doped positive plates provided the data shown in 
Table 14. I t  is significant that nickel-doped plates evolved 
three to five times as much gas as standard (undoped) 

Table 14. Gassing rate at 160°F for positive plates 

plates; gas release from the 3% graphite-doped plate 
was also higher. The other additives showed no signifi- 
cant change in gassing. 

Thus excessive gassing eliminated nickel and 3% 
graphite as additives. Two charge-discharge cycles were 
then performed on cells that contained doped positive 
plates. The results of these cycle tests are summarized 
in Table 15. On the basis of a relatively low surge 
potential, low outgassing rate, and unimpaired capacity, 
lead oxide-doped positive plates were selected for further 
study. Cells containing lead oxide doped positive plates 
were subjected to repeated charge steps in order to 
determine the effect of additive concentration on the 
magnitude of the surge. The results, shown in Fig. 50, 
indicated for all runs a reduction in surge potential when 
two or three percent of lead oxide has been added to the 
positive plate. Complete elimination of the surge by this 
means would require optimization of the method of 
addition and the concentration level of the additive. 
Further investigation of transient elimination was termi- 
nated in favor of a change in charge mode and use of a 
sealed-manifold type battery. 

c. Other proposed remedies for elimination of charge 
surge. Other possible remedies for the charge surge 
problem included: (1) modification of the battery charg- 
ing system to permit discrimination between charge surge 
potential rise and the final increase in battery potential 
which indicates that the charge is to be terminated; 
(2) charging the battery at a constant potential, where 

Table 15. Voltage transient analysis 

Construction variation 

1 % nickel in positive 

2% nickel in positive 

3% nickel in positive 

1 % CdO in positive 

1 % PbO in positive 

2% PbO in positive 

3% PbO in positive 

Cellophane next to positive Ag tested cellophane 

Next to positive 
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WEIGHT PERCENT PbO ADDED TO POSITIVE ELECTRODE 

Fig. 50. Effect of positive plate additive on voltage tran- 
sient at  1 -A charge and 75"  F with experimental cells 

the charging current would reduce to a trickle as the 
battery reached the fully-charged condition; and (3) re- 
designing the battery so that it may be overcharged 
without damage. 

The remedy adopted for the flight and prototype 
models used approach (3). The principal features being 
the adoption of constant power charging, subsequent 
float at a 27.3-V limit, and the use of a common mani- 
fold between cells. 

6.  Separator material. No change in separator ma- 
terials was made from earlier composition (see Subsec- 
tion 111-A-1). 

battery must discharge during the lunar night. Therefore, 
work was undertaken to optimize the electrolyte con- 
centration for low temperature performance. 

a. Discharge efficiency us electrolyte concentration. 
The results of tests for the determination of the maxi- 
mum discharge efficiency as a function of electrolyte 
concentration at 0°F are shown in Fig. 51. It is signs- 
cant that at all discharge rates (0.2-1.5 A), maximum 
discharge efficiency was obtained at a potassium hydrox- 
ide concentration of 40%, and that the efficiency was 
inversely proportional to the discharge rate. Similar data, 
including information on 40% potassium hydroxide sat- 
urated with zinc oxide, are presented in Fig. 52. Again, 
40% potassium hydroxide appeared to be the best 
electrolyte. 

b. Stand loss vs  electrolyte concentration. I t  has been 
shown (see Fig. 28), that the loss in capacity during 
charged stand is negligible at low temperature (e.g., 
3S°F), but may be relatively high at elevated temperatures 
(e.g., 125°F). Therefore, it was imperative to determine the 
stand loss as a function of electrolyte concentration. The 
pertinent data are plotted in Fig. 53. Although at 40% 
potassium hydroxide, the capacity loss rate was not 
minimal, but it was considered to be tolerable. 

c. Cell discharge potential us ebct~.olyte concentra- 
tion. Cells containing four and five layers of cellophane 
separator were discharged repeatedly at the 35-A rate 
for 50-ms periods in an ambient 35°F environment and 

40 
7. Electrolyte. Battery discharge capacity is relatively 32 36 40 44 

low at low temperatures (see Figs. 44 and 46). This POTASSIUM HYDROXIDE CONCENTRATION, % 

reduced performance is particularly marked at higher Fig. 51. Discharge efficiency of experimental-type 
discharge rates, and it is under such conditions that the cells at  O°F vs KOH concentration 
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the resulting discharge potential was observed. At an 
electrolyte concentration of 40% potassium hydroxide, 
the potential was a n~aximum, as illustrated in Fig. 54. 

d .  Concl~tsions regarding tlze electrolyte concent~a- 
tion. Based on discharge efficiency, tolerable stand loss, 
and discharge voltage, it was decided to retain the elec- 
trolyte concentration at 40% and to omit the addition 
of zinc oxide to the electrolyte. 

8. Intercell connectors. The battery requirements 
called for temperature rise limits of 40°F when a cur- 
rent of 32 A flowed for 0.5 h through current-carrying 
components such as intercell connectors. The experi- 
mental model battery used copper strips of 0.060-in. 
thickness and a width of approximately 1.5 in. as intercell 
connectors. No experimental data for the temperature 
rise under these conditions are available. However, pre- 
paratory to the design of the development model battery, 
a 4-ft length of No. 8 AWG (American wire gage), lead 

DISCHARGE RATE, A was tested by passing 32 A through it for 30 min and 
Fig. 52. Discharge efficiency of experimental-type measuring the temperature of the lead with a tllermo- 

cells at 0" F vs rate couple. The results of this test (Table 16), indicated a 
temperature rise of 15"F, where a maximum permissible 
rise of 40°F was specified. 

POTASSIUM HYDROXIDE CONCENTRATION, % 

Fig. 53.  Capacity loss rate vs KOH concentration 
for experimental cells at  125" F 

9. Cell case. The Su~oeyov battery used the cell case 
as the primary structure of the battery case. The battery 

5 LAYERS OF CELLOPHANE 

0 4 LAYERS OF CELLOPHANE 

@ AVERAGE 

1 .o 
32 36 40 44 

POTASSIUM HYDROXIDE CONCENTRATION, % 

Fig. 54. High-current cell discharge voltage as a function 
of KOH concentration for experimental cells at  35°F 
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Table 16. Intercell eennector test case was potted into a magnesium canister that provided 
mechanical support as well as mounting provisions. This 
subsection is concerned with cell case material studies, 
performed to evaluate the experimental model cell case, 
and potential improvements. 

a. Cell case burst strength. Experimental model bat- 
teries, made with Cycolac T-1000, Cycolac T-2502, and 
polystyrene cell cases, were subjected to burst strength 
tests at 0, 75, and 12S°F. The results are presented 
in Table 17. At O°F, both Cycolac plastics were inferior 

Table 17. Cell case burst data 

Tested Remarks 

place, end walls supported 

Model 203 monoblock polystyrene with top seal (pot), end walls 

Fourteen cell Model 203 polystyrene case in a magnesium chassis 

Model 203 monoblock, natural Cycolac T-1000 cover cemented in 
place, end walls supported 

Model 203 monoblock, Cycolac T-2502 appliance white, cover Polystyrene cover burst 

cemented in  place, end walls supported 

7 cells Cycolac T-2502 End cell broke in corner 

7 cells Cycolac T-1000 End cell broke in corner 

Potted with 81 5 $ TETA 

7 cells Cycolac T-2502 End cell broke between Cycolac and epoxy . 
7 cells Cycolac T-1000 Side walls failed 

Potted with 81 5 $ TETA 

7 cells Cycoloc T-2502 Cement failure 

7 cells Cycolac T-1000 Cement failure 

14-cell battery 
7 cells Cycolac T-2502 
7 cells Cycolac T-1000 

Random cracks 
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to polystyrene in burst strength, while at the higher 
temperatures Cycolac T-1000 was superior to polystyrene. 
The low burst strength of the Cycolac plastics at low 
temperatures and the requirement in the procurement 
specification that the battery be capable of withstanding 
a differential pressure of 65 psi for 5 min, led to the 
decision to retain polystyrene as cell case material and 
to use 815 + TETA + Eccospheres as potting materials 
for potting cell cases into the magnesium canister. Burst 
strength data for this combination of polystyrene and 
potting material are presented in Subsection V-A-2. 

b. Leak test. Cell cases, encased in epoxy and mag- 
nesium, were subjected to helium leak tests where the 
cases were pressurized with helium and the pressure 
decay measured. A leak rate of 4.3 X cm3/atm-s was 
obtained at 12S°F for a 14.7 psi differential pressure, 
compared to a maximum allowable leak rate of 1 X 
cm3/atm-s. The leak rate of these encased cell cases was 
therefore well within requirements. 

c. Differential expansion between cell cases and can- 
ister. Failure of the experimental batteries at tempera- 
ture extremes in four out of a total of eight batteries has 
been attributed to differences in the thermal expansion 
and contraction between the outer magnesium canister 
and the individual polystyrene cell cases. The ratio of 
thermal expansion of polystyrene to magnesium is ap- 
proximately 3:l (Table 18). Using the following equa- 
tion, calculations were made to establish the magnitude 
of the stress, resulting in the cell cases from exposure 
to temperature extremes: 

- E (a ,  - a,) aT-  

Table 18. Material properties 

where 

S = stress in cell case, psi 

AT = temperature change, OF 

a, = coefficient of thermal expansion of the cell 
case material, in./in. OF 

a, = coefficient of thermal expansion of the bat- 
tery case material, in,/in. OF 

E = modulus of elasticity of the cell case ma- 
terial, psi 

Assuming that the cell case was strained to acquire the 
same size as the battery canister in the absence of strain 
(a valid assumption in view of the greater elasticity of 
the battery case), the stress generated in the cell case 
was calculated at 12.3 psi/OF for polystyrene and 
11.3 psi/"F for Cycolac cell cases. If manufacture takes 
place at 70°F, then at temperature extremes, the thermal 
stresses listed in Table 19, could result. 

Table 19. Thermal stresses in cell cases 

The use of a flexible epoxy to bond the cell cases to the 
magnesium canister has been suggested as a means for 
reducing the thermal stress. 

d. Separator expansion. As a part of the thermal ex- 
pansion analysis, the effect of temperature on space 
available for the cellophane separator has been calcu- 
lated, based on the assumption that the size of the cell 
case is determined by the dimensions of the magnesium 
canister. The change in space available to the cellophane 
separator as a result of a 70°F temperature change has 
been calculated by the following formula and data from 
Table 19: 
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where 

AX = change in space available for cellophane, in. 

AT = temperature change, OF 

Ldf = thickness of magnesium canister, in. 

aA4 = coefficient of thermal expansion of magne- 
sium, in./in. OF 

1, = thickness of silver, in. 

a, = coefficient of thermal expansion of silver, 
in./in. OF 

1, = thickness of zinc, in. 

a, = coefficient of thermal expansion, in./in. OF 

1, = thickness of Synpor, in. 

a, = coefficient of thermal expansion of Synpor, 
in./in. F 

1, = thickness of Polypor, in. 

a, = coefficient of thermal expansion, in./in."F 

1, = thickness of Viskon, in. 

a, = coefficient of thermal expansion of Viskon, 
in./in. OF 

The calculated value was 3.4 X 10-"n./OF, or 0.24 mil 
for the 70°F change. This small change was considered 
to be negligible. 

10. Battery sterilization. Preliminary requirements 
specified sterilization of the interior and exterior of the 
battery. Sterilization of the exterior surfaces of the bat- 
tery was to be accomplished by exposure of the battery 
to a sterilizing gas mixture, composed of 12% ethylene 
oxide and 88% Freon-12, for a period of 24 h at 100°F 
in the absence of air. Sufficient water vapor was to be 
added to raise the relative humidity of the change to 
35 (+IS, -5)%. 

Sterilization of internal components of the battery was 
to be accomplished as follows: 

(I)  Internal cell components (plates, separators, etc.) 
were sterilized by the KOH electrolyte. 

(2) Metal parts, wires, connectors, and lacing tape 
were heat sterilized by heat soaking at 257OF 
for 24 h. 

(3) Injection-molded polystyrene parts were inherently 
sterile due to molding process. 

(4) Polystyrene cement was made self-sterilizing by 
the addition of 3 wt% of a mixture consisting of 
37% formaldehyde and 63% methyl alcohol. 

(5 )  Mating parts were sterilized by wiping with a 
mixture consisting of 37% formaldehyde and 63% 
methyl alcohol. 

(6) Use of sporicidal cements and compounds. 

Sterilization qualification consisted of successful com- 
pletion of sporicidal tests on specimens, contaminated 
with B. Subtilis Variety Niger at lo4 viable organisms 
per gram. All spore concentrations were determined at 
JPL. The first five of the above sterilization techniques 
were accepted by JPL. Evaluation of the last technique 
was in progress when the sterilization requirement was 
waived by JPL and all work in this area terminated. 

Preliminary results of studies on cements and potting 
compounds are given in Table 20 and they indicate that 
Emerson and Cuming X1216 f Catalyst 9 and Epon 815 
f TETA were the only nonsporicidal agents on the list. 
Cycolac plastics were negative after sterilization by mold- 
ing at 300°F. 

G. Conclusions 

The test program revealed that the basic design of 
the Surveyor main battery was adequate for the intended 
mission. Several minor deficiencies were uncovered and 
corrected in subsequent phases of the Surveyor main bat- 
tery program. These deficiencies included the following: 

(1) The discharge capacity of the experimental model 
battery was approximately 10% too low to provide 
acceptable performance during the lunar night. 

(2) Cell failures occurred as a result of excessively 
tight wrapping of the separator material during 
the manufacturing process and this situation was 
rectified by using additional separator material to 
allow a more generous fold. 

(3) Cell failures, because of shorted cells, occurred 
during tests at temperature extremes (0 and 125°F) 
as a result of differences in the thermal expansion 
rate of the magnesium canister and the polystyrene 
cell cases. The solutioi~s to this failure mode were 
proposed for the next phase of the program. 

(4) During charging of the battery, a surge (voltage 
transient) occurred when the potential changed 
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Table 20. Sterilization samples 

ESB cure at 50°F 

ESB cure at 30°F 

from the univalent silver (Ag,O) level to the di- 
valent silver (Ago) level and when an interrupted 
charge on the divalent level was resumed. 

sealed cells by a common manifold between cells, were 
adopted. 

The surges were of sufficient magnitude to cause 
termination of constant current, voltage limited charging 
long before the battery was fully charged. The charac- 
teristics of this charge surge were investigated and at- 
tributed to a coating of nonconducting Ag,O on the posi- 
tive electrode. An effort was undertaken to incorporate 
inert conductive material in the positive electrode to 
minimize the effect. Addition of 2 3 %  lead oxide pro- 
duced some reduction in surge, but the investigation 
was terminated before the additive program was com- 
pleted. A different charge mode, and replacement of 

IV. Development Model Surveyor Main Battery 

A. General Features 

In common with the experimental model battery, the 
development model had individually sealed cells, poly- 
styrene monoblock material, and the magnesium canister. 
A picture of the development model battery is presented 
in Fig. 55. A 10% increase in capacity was achieved by 
increasing the amount of positive active material pro- 
portionately, but the weight was held at approximately 
the same level by weight reduction in the positive grid 
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B. Cell Details 

Except for a change in electrode dimensions to accom- 
modate the increased amount of positive material, the 
cells of the two models differed little. The same electro- 
lyte and separator system was maintained, as indicated 
in Table 22. 

C. Parametric Tests 

Owing to a number of reasons including poor per- 
formance of the initial lot of development model bat- 
teries, a tight schedule, and use of the batteries in system 
integration studies, the test program for this battery was 
rather limited. 

1.  Initial charge. During the manufacturing cycle, 
certain batteries did not accept the expected 180 A-h 
charge input, reaching the 27.3-V cutoff with an input 
of only 110 A-h. The initial charge consisted of charging 
to a 27.3-V cutoff at the 3.0-A rate, followed by a similar 
charge at the 1.5-A rate. During this cycle, excessive 
electrolyte (3.74.0 in.3) was expelled, compared to an 

Fig. 55. Surveyor development battery (model ESB 204) expected volume of 3.4 in.3. Addition of more electrolyte 
permitted the cells to accept a normal charge. 

and in cell potting. A weight breakdown for both model 
batteries is shown in Table 21. The battery incorporated Tests, conducted with positive plates from experi- 
a temperature transducer to monitor battery tempera- mental and developmental model batteries, indicated 
ture. The transducer is described in Subsection V-A-4. that the development model positive plates evolved 

Table 21. Weight estimate for experimental and development model Surveyor batteries 
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Component 

Chassis 

Electrolyte 

Positive material 

Negative material 

Positive grid 

Negative grid 

Separators and retainers 

Polystyrene cell case 

Wiring channel potting 

Cell terminals and nuts 

Intercell connectors 

Wiring connectors 

Development model, weight Experimental model, weight 

Pounds 

2.30 

8.90 

16.50 

10.50 

0.68 

1.74 

0.06 

2.67 

Pounds 

2.33 

8.50 

15.00 

10.40 

1.08 

1.58 

0.05 

2.44 

% of total weight 

5.03 

19.45 

36.06 

22.95 

1.48 

3.80 

0.1 3 

5.84 

% of total weight 

5.1 3 

18.71 

33.02 

22.89 

2.38 

3.48 

0.1 1 

5.37 



approximately 2.5 times as much gas as the experimental 
model positive plates and this discrepancy occurred only 
during the first charge. Probably the evolved gas forced 
the electrolyte away from the positive plates and pre- 
vented them from accepting a normal charge. 

Initially, silver was suspected and special test cells 
were constructed to test this supposition. The types of 
test cells and the test results are presented in Table 23. 

The data indicated that the poor performance was due 
to Synpor or Polypor separator and not the silver powder. 
The variable performance evident in the first cycle of 
the development model battery and in the second cycle 
of the special test cells was never fully understood, but 
was attributed to differences in soak time prior to charge. 

Concurrently conducted microscopic analysis of posi- 
tive plates and silver powder as well as surface area 

Table 22. Characteristics of Surveyor development model battery cells 

Active plate area, in.2 

Total plate area, ins2 Amount per cell, in.3 

Silver per cell, Ib 

Active material density, Ib/in.3 

193 PUDO cellophane 

Center plate thickness, in. 

End plate thickness, in. Free space ratio for cellophane 

210 expanded Ag Ratio of positive capacity to 

No. of center negatives per cell negative capacity theoretical 

No. of end negatives per cell 

Table 23. Cell variation test I 

No Synpor or Polypor 

Pressed powder positives 

No. 1 grid in positives 

No grid in positives 

Sintex positive at 11 50°F 

Standard 203 

No Synpor or Polypor 

Pressed powder positives 
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measurements of the positive plates by the Brunauer, 
Emmett and Teller (BET) technique indicated no sig- 
nificant variation between plates from several silver lots. 

A second set of cells was constructed for use in tests 
to determine which of the suspect separator materials 
(Synpor or Polypor) was giving rise to gases. The results 
in Table 24 clearly indicate Synpor to be the cause of the 
poor performance of the development model battery. 
Subsequent chemical analysis of Synpor lots from both 
types of batteries indicated that the lot used in the 
development model contained 15 1+3% starch, while 
the Synpor in the experimental model contained 45 +5% 
starch. The reason for better performance from high- 
starch Synpor has not been established. Repeated at- 
tempts to obtain Synpor with uniform characteristics 
were unsuccessful. Difficulties in obtaining lots of Polypor 
that met KOH wetting specifications further contributed 
to the dissatisfaction with the separator system, used in 
the development model battery and the decision was 
made to consider use of a new separator system for the 

Table 24. Cell variation test II 

prototype batteries. Table 25 provides a list of candidate 
separator systems. 

2. Initial capacity. The initial discharge capacity of 
the ten development model batteries and subsequent 
charge-discharge data are presented in Table 26. The 
initial discharge capacity of five of the batteries was 
below the design value of 165 A-h, even though their 
initial charge acceptance was normal. Batteries X-15 
and X-16 had a low charge acceptance during the second 
charge. Battery X-15 was short-lived as two shorted cells 
vented. Battery X-16 was much longer-lived and its 
initially low discharge capacity did not drop further 
after additional cycles. 

3. Float charge. Tests for float charge capability have 
been conducted using pressure-gage equipped cells 
(Bourdon gages), arranged in monoblocks. Owing to cell 

Table 25. Separator systems 

Separator system 

Table 26. Capacity data for development batteriesa 
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mismatch, wide pressure differences occurred between 
cells, resulting in shorted cells and high cell pressures 
with ultimate venting at pressures above 50 psig. It  is 
significant that these cells were i~ldividually sealed. 

4.  Cycle life. A cycle life test was conducted on one 
development model battery; in spite of one low capacity 
cell, this battery was able to complete eleven cycles 
having a depth of discharge above 90%. Other condi- 
tions were: ambient temperatures, 2.0-A charging cur- 
rent to 27.3-V cutoff, and 5.0-A discharge current to a 
18.0-V cutoff. The discharge limit was raised to this 
18.0-V limit from the initial 17.5-V value after the third 
cycle to prevent cell reversal of the low cell. This battery 
may well have been able to operate for additional cycles, 
were it not for an equipment failure at the end of the 
eleventh cycle, resulting in complete discharge and cell 
reversals. The cycling data (Fig. 56) sho\v a marked 
trend toward lower charge acceptance and discharge 
capacity with an increasing number of cycles. The dis- 
charge capacity was below the limit of 165 A-h in the 
seventh cycle. 

100 
0 5 10 15 20 

NUMBER OF CYCLES 

200 

Fig. 56. Cycle-life study on developmental 
model battery 

I - CHARGE AT 2.0 A TO 
27.3 V CUTOFF 

D. Mission Simulation Tests 

A very limited mission simulation program was under- 
taken with the development model battery. 

1 .  Lunar night discharge. Sequence No. A-3 (see 
Table 3) required discharge at  a relatively low rate for 
approximately 84 h at low ambient temperatures. A lunar 
night discharge capacity test has been conducted with a 
development model battery at  an ambient temperature 
of 40°F and a constant 0.5-A discharge rate. A total of 
147 A-h was discharged to a potential of 19.0 V at an 
average potential of 22.2 V. At the battery potential 
of 19.0 V, one cell had a potential of only 0.063 V, caus- 
ing premature termination of the test. 

2. Lunar day high rate discharge. As indicated in 
Table 3, several short-term high current discharges are 
required from the battery during lunar days. A 10-s 
high-current sweep, obtained from a development model 
battery that was over two years old, indicated that at 
ambient temperature the battery can furnish the required 
50-ms pulses at 85 A and less (Fig. 57). 

3. Environmental tests. One development model bat- 
tery was subjected to a series of type approval tests and 
it passed the required vibration, shock, and acceleration 
tests (see Subsection 11-D), but one of the cells reversed 
its potential during the 7.0-A discharge at  the end of the 
test. Subsequent charging revealed a shorted cell. 

E. Conclusions 

The studies with the development model battery were 
accompanied by a number of problems, caused by poor 
performance and nonuniformity of separator materials. 
As a result of separator problems, a change in the sep- 
arator system was made in subsequent models of the 
battery. In most instances, the battery ampere-hour ca- 
pacity was increased by the desired 10% to enable it to 

30 

OPEN ClRCUl 

20 

CURRENT, A 

Fig. 57. Potential vs current for high-rate discharge of 

fully charged developmental model battery 
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meet the lunar night requirements. Use of individually 
sealed cells gave rise to large pressure differences be- 
tween cells during float-charge and the hazards asso- 
ciated with high cell pressures were instrumental in the 
later adoption of a manifold system. In retrospect, it is 
evident that the design of the development model bat- 
tery was frozen too early to take advantage of the find- 
ings from the experimental model battery phase, so that 
the development model contributed relatively little to 
the advancement of the program. Undoubtedly, schedul- 
ing pressures were responsible for the early freeze. 

V. Prototype Model Surveyor Main  Battery 

The prototype battery program encompassed five ver- 
sions that differed from each other in some details 
(Table 27), but had many features in common including: 
manifoldG, electrolyte, amount and density of negative 
active material, positive plate area, and major dimen- 
sions. Each prototype version identified problems and 
contributed to their solution. For example, batteries T-1 
and T-2 uncovered fabrication problems that were asso- 
ciated with the manifold design, and problems encoun- 
tered in type approval vibration tests. A description of 
the prototype battery principal features is included in 
the subsequent paragraphs. 

A. Description of the Prototype Model Battery 

1. General. In common with the development model, Fig. 58. Monoblock case prototype battery 

the battery is made up  from three- and four-cell mono- 
bIocks that use uolvstvrene as case material. The basic 

A , ,  

change in monoblock design comes from incorporation 
of a manifold. A typical monoblock case with manifold 
is shown in Fig. 58, and a prototype battery (No. X-32), 
is shown in Fig. 59. Except for the absence of reinforcing 
braces around the periphery, the flight model resembled 
the prototype battery in outer appearance. Detailed 
drawings of a monoblock assembly are presented in 
Figs. 60-62. 

2. Monoblock and canister development. The major 
features of monoblock and canister development are 
discussed in the following paragraphs. 

a. Loto temperature btmt presstcre. A copolymer of 
styrene and acrylonitrile (called '>olystyrene" for brevity 
in this report) has been selected as monoblock material 

W.S. Patent 3,282,740, assigned to ESB, Incorporated. Fig. 59. Prototype battery 
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Table 27. Characteristics of prototype and flight model cells 

and a combination of EPON 815 + TETA + Ecco- 
spheres7 as potting compound for the prototype battery. 
Molded prototype cell cases were fabricated into several 
14-cell units and potted into magnesium canisters, where 
several plastic materials and potting compounds were 
used. Low temperature burst pressure tests were per- 
formed on these units in order to ascertain the per- 

Preproducfion, 
Characferistics 

'See Appendix for trade names. 

Total plate area, in.2 

Silver per cell, Ib 

Active material density, Ib / i r~ .~  

No. of plates 

Remarks 

Negative 

Height, in. 

Width, in. 

Center plate thickness, in. 

End plate thickness, in. 

Type of grid 

No. of center negatives per cell 

No. of end negatives per cell 

Zinc-oxide per cell, Ib 

Active material density, Ib/in.3 

Active plate area, in.2 

Remarks 

Electrolyte 

Type 
Amount per cell, in.3 

separatora 

No. 1 type 

No. of layers 

No. 2 type 

No. of layers 

No. 3 type 

No. of layers 

Free space ratio for cellophane 

Ratio of positive capacity to 

negative capacity, theoretical 

Battery 

Terminal 

Canister potting 

nlisted from positive to negative. 

formance of the selected combination and obtain data 
on possible substitutes, in the event the selected com- 
bination failed. The results of the burst pressure tests, 
summarized in Table 28, indicate a burst pressure range 
of 105-135 psig for six units of the selected composition, 
while other con~binations failed at lower pressures. Burst 
pressures of this magnitude were far above operating 
pressures and the polystyrene-EPON 815/TETAi/Ecco- 
spheres combination was retained. 
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Fig. 60. Side view of monoblock assembly of 
prototype battery 

7 

Fig. 61. Top view of monoblock assembly of 
flight battery 

b. Bonding of monoblocks to canister. Problems asso- 
ciated with cell case cracking due to the differential 
thermal expansion of cases and canister were solved in 
the prototype model battery by application of a fluoro- 
carbon spray (MS-222) to the monoblock exterior to pre- 
vent bonding of EPON 815 + TETA + Eccospheres 
to the magnesium canister. 

c. Surveyor main battery burst pressure as a function 
of battety temperature. In order to establish solar ther- 
mal vacuum abort limits for the battery, the dependence 

Table 28. Burst pressure test data for prototype 
model battery 

COVER /- THERMAL 

L - - - - -J 
ASSEMBLY 

Fig. 62. End view of monoblock assembly of 
prototype battery 
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of burst pressure on battery temperature had to be deter- 
mined. Tests on prototype battery cases were performed 
at ESB, followed by tests on prototype and flight bat- 
teries at  HAC. Results of the tests are plotted in Fig. 63. 
The large difference between ESB and HAC results may 
have been caused by a different rate of pressure appli- 
cation; owing to the lack of such information, no definite 
explanation can be offered. 

3. Manifold. The experimental and development model 
batteries contained individually sealed cells. Such seals 
offered the advantage of avoiding electrolyte leakage 
from cell to cell, that would result in self-discharge and 
lowered capacity retention. The use of individually sealed 
cells required a close match of individual cell capacities 
in a battery and available manufacturing techniques 
made attainment of a close match costly. Extended over- 
charge, or reversal of a sealed cell in a battery, can lead 
to buildup of significant gas pressure (see Fig. 18) in the 
cell with eventual cell rupture. Owing to the possible 
premature termination of charge by a transient voltage 
spike (see Subsection 111-F5), the Surveyor battery 
charger logic had to be redesigned to accommodate 
extended periods of overcharge. Overcharging in the 

TEMPERATURE, OF 

Fig. 63. Results of burst pressure tests on prototype 
and flight battery cases and batteries 

float condition provided increased capacity. As indicated, 
individual sealed cells, unless very closely balanced, 
could not withstand the overcharge successfully. There- 
fore, production prototype and flight batteries were 
equipped with a conlmon manifold into which all cells 
were vented. The manifold was designed to allow ample 
volunle for expansion of gas generated during extended 
overcharge (float). A pressure transducer was installed 
as an added safety measure. This permitted automatic 
charge termination when a predetermined pressure had 
been reached. An initial setting of 65 psia was selected 
on the basis of battery case burst pressure tests. Pres- 
sures during discharge were generally well below over- 
charge pressures. 

Transfer of electrolyte between cells was avoided by 
installation of an electrolyte trap on each cell, whereby 
the path between cells becomes long and tortuous. The 
trap contained a narrow tube that was filled with ab- 
sorbent cellulose. Figure 64 illustrates the design of the 
redesigned cell. The efficiency of the trap to block 
the passage of electrolyte was tested by inversion of a 
monoblock case with attached manifold (see Fig. 58). The 

FREE CELLULOSE 

/- 
MANIFOLDING 

VOLUME 
--\ -7 COVER 

TOP OF 
SEPARATOR - 

INTERCELL 
CONNECT0 

STANDPIPE 

TOP OF 
PLATES 

POLYSTYRENE 
CELL CASE 

Fig. 64. Cell construction of prototype battery 
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manifold dimensions were governed by strengtll of ma- 
terials, weight, and volume limitations. 

4. Pressure and temperature transducers. The Stc~vetJo~ 
main battery was equipped with one sensor for pressure 
measurement, and one sensor for measurement of the 
battery temperature. Following are some details for 
these sensors. 

a. Presszwe transducer. The battery pressure transducer 
nlonitored the absolute pressure in the manifold and 
caused charge termination in the event the pressure 
reached 65 psia. The transducer (Bourns, Inc, part) used 
a bellows that drove a counterbalanced wiper arm to 
multipy the motion of the bellows. The wiper contacted 
a variable resistance element of 2,000-a resistance. The 
total element resistance was 11,600 n. The allowable 
static error band was 10 .17%.  A 29.0-V potential was 
applied across the total resistance element and the out- 
put was linear over the range of 0-150 psia with an 
output of 0-5.0 V (Fig. 65). The resolution of the trans- 
ducer was within ~ 0 . 2 5 %  and the overall accuracy band 

TRANSDUCER RESISTANCE, 0 

0 1 2 3 4 5 

TRANSDUCER POTENTIAL, V 

Fig. 65. Transducer calibration for prototype battery 

within t 2 . 0 %  over the temperature range of 0-125°F 
with a similar accuracy found by the vendor to extend 
at least 100°F beyond each of these limits. The pressure 
transducer was connected to the manifold, using an 
O-ring. The pressure transducer and its connection to 
the manifold are shown in Fig. 59. 

b. Temperature t~ansduce~.  The temperature trans- 
ducer (Trans-Sonics, Inc. part) uses a platinum resistance 
element having a resistance of 500.0 a at a temperature 
of 32°F. Application of a constant current of 5.0 mA 
resulted in a potential that was directly proportional to 
the temperature. A typical temperature transducer cali- 
bration curve is shown in Fig. 65. The accuracy of the 
transducer was within i 2 " F  over the range of 0-12S°F, 
and a similar accuracy extends to much higher tempera- 
tures. The transducer mounting was located on top of 
the battery, thermally connected to a vertical plate, near 
the junction of the three- and four-cell monoblocks, and 
the resistance element reached to the center of the bat- 
tery to measure the case temperature of the center- 
most cell. 

5. Cell details. It  was indicated in the Section V intro- 
ductory paragraph that the five versions of the prototype 
battery had a number of features in common. Differences 
in design stemmed from the conduct of tests and the 
resultant fixes to correct unsatisfactory cell behavior. 
The following paragraphs provide some specifics con- 
cerning cell design and evolution. An overall view of 
changes in cell design is given in Table 27. 

a,. Negative plate. Except for changes in plate thick- 
ness and plate loading, only one other significant change 
was made on the negative electrode. This change, effec- 
tive only for the last version of the prototype and all 
flight batteries, involved strengthening the plate by 
providing a polystyrene X frame, and is discussed in 
Subsection V-C-1. 

b. Positive plate. Changes were made in plate thick- 
ness, type of grid, plate loading, active material density, 
and increasing the vibration resistance of the plates by 
use of two polystyrene struts per plate that permitted 
securing the plate at the top to the cell jar. Polystyrene 
struts are discussed in Subsection V-C-1. 

c. Sepa:rator. The first preproduction prototypes had 
one layer of nylon separator near the positive plate, 
followed by seven layers of cellophane. Later prototypes 
and flight batteries used just six layers of cellophane. 
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d. Electrolyte. The electrolyte development is dis- 
cussed in the following paragraphs relative to concen- 
tration and volume. 

Electrolyte concen.tration. The superior discharge 
efficiency of 40% potassium hydroxide at low tempera- 
tures (see Fig. 52) led to the selection of this electrolyte 
concentration for the prototype and flight batteries. The 
relatively high capacity loss rate of cells with 40% 
potassium hydroxide at high temperatures such as 125°F 
(see Fig. 53) was not considered to be sufficiently serious 
to cause operational problems. 

Electrolyte volume. First prototype batteries used 
11.6 ins3 of electrolyte per cell. Based on a suspicion that 
these cells might be deficient in electrolyte, a closer look 
was taken at the method used to determine the amount 
of electrolyte. The method used in the past by ESB was 
to allow a fixed volume, X in.3 of electrolyte per in.3 of 
cell pack volume, where X was made equal to that of 
similar successful cells. It  was decided that a better 
approach would involve: 

(1) Calculation of the apparent volume occupied by 
the fully wetted cell pack, including the volume 
occupied by the portion of separator material 
extending beyond the plates. 

(2) Determination of the actual volume occupied by 
the cell pack by multiplying the apparent volume 
of each component by its percent solids. 

(3) Determination of the volume available for elec- 
trolyte by subtracting the actual volume from the 
apparent volume, 

Performance of these calculations on several models of 
the Surveyor main battery gave the information shown 
in Table 29. 

I t  was concluded by ESB that, to contain the same 
relative amount of electrolyte as the experimental model 
cells, the prototype cells should contain 12.8 in.3 of elec- 

Table 29. Volume available for electrolyte 

trolyte. This volume exceeds the available volume in the 
prototype cell, and, possibly for this reason, an electro- 
lyte volulne of 12.5 in.3 was selected for prototype bat- 
teries bearing serial numbers X-19 to X-36. Later proto- 
type batteries as well as all flight batteries had an 
electrolyte volume of 11.8 in.3, based on consideration 
of: (1) recombination of oxygen with zinc near the end 
of charge, (2) pack tightness, (3) amount of active 
materials, and (4) separator characteristics. 

e. Ratio of active materials. Silver-zinc cells are de- 
signed in such a manner as to minimize internal pressure 
buildup during charge. Gas evolution near the end of 
charge arises from generation of hydrogen at  the negative 
electrode and oxygen at the positive electrode. By 
designing the cell with an excess charge capacity in the 
negative plate (positive limited), the only gas evolved 
will be at the positive electrode in the form of oxygen 
and this gas can migrate to the negative electrode where 
it may combine with zinc, thereby reducing the internal 
pressure. 

Gas chromatographic analysis of samples of gas from 
an early prototype battery that had been float charged 
revealed a high percentage of hydrogen and a low per- 
centage of oxygen, indicative of a negative-limited 
condition. This condition led to changes in the theoretical 
ratio of positive capacity to negative capacity, as shown 
in Table 27. This ratio became 0.99 for the last generation 
of prototype batteries and the flight batteries. The mag- 
nitude of the ratio is misleading as the negative active 
material is used more efficiently than is the positive 
material, so that a sufficient amount of actual excess 
negative capacity is available. 

6. Weight and balance. Integration of the battery 
into the spacecraft necessitated knowledge of the center 
of gravity of the battery and a weight and balance 
control was instituted. Figure 66 shows the axes in which 
the center of gravity has been defined. Table 30 gives the 
y, Yand 2 dimension to the battery center of gravity at 
six attitudes for a fully charged and discharged battery. 
The maximum change in the battery center of gravity 
location, because of state of charge, or attitude of the 
battery, was 0.1 in. The battery weight was 46.5 Ib. 

B. Test Program 

This subsection describes electrical performance tests 
of the several versions of the prototype model battery. 

1.  Data processing. In the earlier parts of the pro- 
gram, watt-hour and ampere-hour capacities for battery 
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Table 30. Prototype battery weight and balance and were computed as follows: 

where 

n = the number of data points 

t = time interval 

Fig. 66. Prototype battery weight and balance 

The accumulation of tabular data was also continued 
as it proved useful in determining cell balance at the end 
of discharge and during the float charge. A typical set of 
computer plots for discharge and charge of a prototype 
battery is shown in Fig. 67. 

w 4 +  $P-w3 DATA ARE TYPICAL 2. Battery charging. The battery charging performance 
FOR CHARGED 
BATTERIES tests are discussed in the paragraphs that follow. 

a. Charge design. The design approach to the Surveyor 
flight model main battery and its prototypes involved a 

(5.91) radical departure from that of the earlier models, as will 
become evident from the ensuing discussion of battery 
charging. The new design incorporated: (1) constant 

charge-discharge tests were obtained at HAC by hand 
computation. Battery parameters such as cell and battery 
potentials, current, temperature, and manifold pressure 
were presented in tabular form and then plotted man- 
ually. The HAC computer program was modified to plot 
all parameters and to sum watt-hours and ampere-hours. 
Data points were plotted every 12 min, and the accuracy 
improved. 

w I 

t 
CD 
i 

W2 

The watt- and ampere-hour summations included small 
variations in charge and discharge current and potential 

power battery charge with potential limited to 27.3 V, 
(2) use of a manifolded cell with pressure transducer 

z (4.97) which provided battery charge operation up to a pressure, 

,,,Q,~, equivalent to cell case proof pressure (65 psia), and 
(3) implementation of a cell forming charge technique 
during manufacture to balance voltages at the full charge 
condition instead of the full discharged conditions by 
charging monoblocks to a cutoff potential then combining 

illustrated in Fig. 68. The new design had the following 
advantages: 

Li.A monoblocks with similar ampere-hour input into a battery. 
DIMENSIONS IN INCHES (3.23) A typical battery charge cycle under the new regime is 

(1) Free volume available for gas containment was 
increased from 4.6 in.3 per cell to approximately 
128 ina3 overall. 

(2) Excessive pressure conditions could be detected by 
the pressure transducer. The pressure transducer 
signal terminated charging if pressure level 
equalled battery case proof pressure. 

(3) Balancing the cells at the end of charge during the 
manufacturing cycle diminished the probability of 
excessive gassing near the full charge state. 
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Fig. 67. Typical prototype main battery data plot 
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Fig. 68. Battery charge characteristics 

(4) Battery charging became highly effective because 
float conditions at the end of charge increased 
battery capacity. 

(5)  The battery dynamic voltage surge characteristic 
no longer influenced power system operation. 

Z?. Charge tests. A plot of ampere-hour input as a 
function of charge rate at ambient temperature (Fig. 69) 
indicated that charging to an acceptable level must take 
place at a low rate and to a cutoff potential above 27.1 V. 
Earlier tests (see Subsection 111-B-2) have shown that 
pressure buildup limits the maximum charging potential 
to a level below 28.0 V. A value of 27.3 V was adopted 
for the Sztrveyor main battery. The prototype battery can 
accept a significant charge at low temperatures, when 
charged at a rate below 3A (Fig. 70). 

BATTERY TEMPERATURE, O F  

Fig. 70. Approximate ampere-hour input to 27.30 V vs 

battery temperature and charge rate for prototype battery 

The time required to obtain an input of 125 to 150 A-h 
when charging at ambient temperature to a 27.3-V cutoff 
is shown for various charge rates in Fig. 71. This figure 
clearly shows that an input of 150 A-h was attainable only 
at the 2- and 3-A rates. 

A comparison of attainable charge input when charg- 
ing at 1 A to a 27.3-V cutoff is presented in Fig. 72, where 
all data are normalized to results from charging at 7S°F. 
It is evident from Fig. 72 that charge acceptance at low 
temperatures may only be one-half of the high tempera- 
ture value. 

The watt-hour input for a 1-A charge rate to a 27.3-V 
cutoff is plotted as a function of temperature in Fig. 73. 
It is of interest that the low input of 2600 W-h at O°F 
was raised to a respectable 3760 W-h by an 85-h float 
charge. 

CHARGE WTE, A TIME, h 

Fig. 69. Ampere-hour vs charge rate for Fig. 71. Charge time fo 27.3-V cutoff as a function of 
prototype battery charge rate for a prototype battery 
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Fig. 72. Charge acceptance vs battery temperature 
for prototype batteries 

BATTERY TEMPERATURE, O F  

Fig. 73. Watt-hour charge input vs temperature 
for a prototype battery 

Maximum on-charge pressures for all versions of the 
prototype battery were average and the results are 
summarized in Fig. 74. The highest average pressure 
occurred during float-charging at 75OF and this pressure 
of 32 psia was well within acceptable limits. 

c. Cha.rge acceptance problem and solutions. The data 
in Table 31 show a low charge acceptance in prototype 
cells during the second charge cycle, even though an 
acceptable charge acceptance was obtained during the 
initial charge. Even forced charging to a 2.00-V limit did 
not provide full restoration of cell capacity, though some 
increase in input was obtained relative to charging to a 
1.95-V limit. In order to determine the source of this 
deficiency, the following studies were made: 

(1) An autopsy of cells Q-1 to 4-5 to seek evidence of 
malperformance. 

(2) Measurement of density variations in the negative 
plate. 

(3) Analysis of the ratio of components in the negative 
plate. 

(4) Build and test cells containing 5, 6, and 8 layers of 
cellophane to determine the effect of pack tightness. 

(5) Build and test cells with positive plates from a 
different lot. 

(6) Separator-electrolyte systems. 

Fig. 74. Average of maximum charge pressures 
for all engineering test and prototype batteries 
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Table 31. Performance of prototype model test cells SN 8 - 1  through 8 -5  

Parameter 

Volume of electrolyte first charge, in.3 

lnput ot 2 A, A-h 

lnput at 2 A + 1 A, A-h 

Discharge efficiency, % 
Volume of electrolyte at discharge, in.3 

Second input to 1.96 V, A-h 

Volume of KOH at second charge, in.3 

Total input on second charge to 2.00 V, A-h 

d.  Autopsy of cells. Autopsy of cells Q-1 to 4-5 showed 
both negative and positive plates to be nonuniformly 
charged and the negative plates to be relatively dry. The 
single layer of nylon separator adjacent to the positive 
plates was also quite dry. The dryness of the nylon 
separator indicated a need for its replacement by a 
material with better wetting characteristics. 

e. Density variations of mgative material. Samples 
were taken with a cork borer from nine different loca- 
tions on each plate from five cells, the separator and grid 
material removed from each sample, and the negative 
powder weighed. The weight distribution is plotted in 
Fig. 75 as standard technique, and the data show a 
variation of &35% in weight per unit area. Techniques 

55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95 95-100100-105 

RELATIVE SAMPLE WEIGHT 

Fig. 75. Weight distribution of negative material 

examined for achieving a more uniform weight distri- 
bution were vibration, and use of improved spreading 
tools. Vibration brought no significant improvement in 
material distribution, but use of an improved spreading 
tool resulted in a better weight distribution, as shown in 
Fig. 75. Cells were built with negative plates having 
better weight distribution (Q-11 to Q-15) and compared 
in performance to cells using earlier negative plates; 
cellophane separator was used in both sets of cells to 
avoid the previously mentioned dry separator problem. 
The data in Table 32 show no significant improvement 
in performance when the improved negative plates were 
used, but the technique was adopted for all future cells 
as a forward step in production control. The similarity 
in performance between standard and improved negative 
plates was probably due to migration of zinc oxide from 
high points into deficient areas via a solution phase, 
resulting in the equalization of the material distribution. 

f .  Ratio of components in negative plate. In addition 
to active material, the negative plate contained a pro- 
prietary binder and mercuric oxide. Samples of negative 
material were taken from lots used to manufacture the 
cells in question (Q-1 to 4-5) and analyzed for uniformity 
of composition. The plastic binder varied in content 
between 2.002% and 2.228%, and the mercuric oxide 
concentration was within 0.1% of the specified content. 
These variations in binder and mercuric oxide were not 
large enough to cause the large loss in charge acceptance. 

g. Cell pack tiglztness. The effect of pack tightness on 
charge acceptance was investigated by tests with cells 
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Table 32. Effect of negative weight distribution on cell performance 

Parameter 

separator system most 

nonuniform negative 

Volume of KOH first charge, in.3 

that contained five to eight layers of cellophane in Table 34. Prototype model test cells with positive 

addition to the nylon separator; the free space ratio of plate from previous production run 
these test cells ranged from 5.42 to 3.38, respectively. 
The results of charge-discharge tests with these cells, 
summarized in Table 33, show that pack tightness was 
not the source of the poor charge acceptance in cells 
Q-1 to 4-5. 

h. Positive plate investigation. Test cells were built 
with positive plates from a previous production run and 
charge-discharge sequences performed to determine if 
variation in silver powder or in plate processing may 
have caused poor charge acceptance. The results, sum- 
marized in Table 34, show a similar reduction in charge 
input during the second charge. Therefore, the positive 
plate material was ruled out as source of the problem. 

Discharge efficiency, % 

Table 33. Effect of pack tightness on prototype model cell performance 
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Table 35. Effect of positive plate separator on cell performance 

Parameter 

Separator system 
+ one layer Dynel + one layer Viskan 

Volume of KOH first charge, in.3 

Input A-h at 2 A 

KOH second charge, in.3 

i. Separator-electrolyte systems. With the elimination 
of the positive plate, negative plate and pack tightness 
from the list of suspects for low charge acceptance, 
attention was focused on the separator system. Previously 
mentioned cell autopsies showed the nylon separator to 
be excessively dry. The search for a more wettable 
separator led to the fabrication and testing of cells that 
used cellophane only or combinations of cellophane with 
additional layers of Dynel, Viskon, and a combination of 
both of these materials. Results of charge-discharge tests 
with these cells (E-29 to E-36) showed the all-cellophane 
system (cells E-29 and E-30) to be best (Table 35), but 
further improvement was desired. Additional cells con- 
taining eight layers of cellophane and negative plates 
made with improved spreading techniques were fabri- 
cated and tested (cells Q-11 to 4-15). Data, summarized 
in Table 36, show good performance on the first cycle, 
but reduced and variable charge acceptance during the 
second cycle. Disassembly of cell 4-15 yielded the 
following observations: 

(1) Free electrolyte (1.16 in.3). 

(2) Negative plate appeared partially charged and well 
wetted. 

(3) Positive plates dry in appearance and to touch. 
Weight increase of 0.0042 Ib/plate (1.9 g/plate) 
after soak in electrolyte. 

(4) No silver attack beyond second layer of cellophane. 
The first layer of cellophane next to the positive 
was dry to the touch, but was fully expanded in 
thickness. The second layer was moist, while the 
remaining six layers were wet on the surface. 

Table 36. Performance of cells using 
all cellophane separators 

The dryness of the positive plate following charge may 
be explained by the following electrochemical reactions 
for charging silver-zinc cells : 

At the positive electrode 

2OH-+ Ag,O+2AgO + H,O + 2 e  
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At the negative electrode 

ZnO + H 2 0 + 2 e - + Z n  t 2OH- 

Zn(OH), t -  2 e -+ Zn + 2 OH- 

These equations indicate that hydroxyl (OH) ions are 
consumed during charge and water molecules formed, 
while hydroxyl ions are formed simultaneously at the 
negative electrode. As a result, an electrolyte concen- 
tration gradient is formed between the electrolyte at each 
electrode. The gradient causes hydroxyl ions to diffuse 
from the negative electrode to the positive electrode. 
Water molecules are transferred from the positive elec- 
trode to the negative electrode due to osmotic pressure, 
resulting in a rise of the electrolyte level around the 
negative electrode and a fall around the positive elec- 
trode. A lowering in electrolyte level around the positive 
electrode may produce a dry interface between the 
positive electrode and the separator with resulting poor 
charge acceptance. 

An investigation was made of a possible increase in 
the electrolyte diffusion rate between the positive and 
negative plate surfaces. This was accomplished through 
the use of wicking materials for maintaining the desired 
electrolyte distribution in the vicinity of the plates. 

A four cell monoblock was constructed to determine 
the effect of a wick on the operation of Szrrveyo~ proto- 
type cells. The positive plates were wrapped with seven 
layers of cellophane. Webril (EM 312), consisting of 

75% nylon and 25% Dynel, served as wick, connecting 
the positive plates to the negative plates. Each wick was 
separated from contact with the negative plate by an 
additional piece of cellophane. The four cells were con- 
nected to a common manifold. After a series of charge- 
discharge cycles, summarized in Table 37, the following 
conclusions were drawn: 

(1) The use of a wick to transfer electrolyte between 
the positive and negative electrodes was effective 
in eliminating the loss in capacity by electrolyte 
depletion. 

(2) The use of a positive to negative wick lowered the 
electrolyte level around the negative electrode at 
the end of charge and increased the rate at which 
oxygen can recombine with the negative active 
material. 

(3) The use of cellophane between the wick and the 
negative plates and operation in a positive limited 
condition eliminated the tendency toward the 
growth of zinc trees in the wick. 

Although cells containing wicks performed satisfac- 
torily in these tests, they were not selected for flight cells 
because of some unknown qualities, such as; perfor- 
mance with increasing cycle life, and the possibility of 
intercell shorts in the event of "treeing" up the wick. 
Subsequent prototype and flight batteries used positive 
plates of lower density combined with an increased 
volume of electrolyte. 

Table 37. Performance of cells containing wicks 
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Parameter 

lnput at 5 A, A-h 
lnput at 2 A, A-h 

Output, A-h 

Discharge efficiency, % 
Volume of KOH a t  discharge, in.3 
Input at 2 A, A-h 

Input during float, A-h 

Output, A-h 

Volume KOH at discharge, in.3 
Input a t  5 A, A-h 

Input at 5 + 2 A, A-h 

Output, A-h 
Input at 5 A, A-h 
Input at 2 A, A-h 

188.5 
95.5 
12.8 

184 
203 
203 

12.8 
175.5 
185.1 
189.5 

187.4 

Wontainer broke. 

188.5 
95.5 
12.8 

184 
203 
205 

12.8 
175.5 
185.1 
189 

187.4 

I 

188 
95.3 
12.8 

184.2 
203 
202 

12.8 
175.5 
187.7 
190 

186.6 

193 
95 
12.8 

182.2 
203 
204 

12.8 
175.5 
187.7 
191 

189.4 

198.5 
95.7 
12.8 

175.8 

178 
12.2 

183.0 
188 
165.4 

193.5 
95.2 
12.8 

182 

182 
12.2 

187.4 
190 
168.4 

190.5 
95.7 
12.8 

183.8 

183 
12.2 

184.4 
186 
168.4 

190.5 
19.7 
12.8 

182 

182 
12.2 

187.4 
189 
165.4 

169.6 
94.3 
12.8 

191 
210 
212 

12.8 
172 
184.2 
187 
175.9 

170 
94.4 
12.8 

191 
210 
212 

12.8 
172 
185.2 
189 
171.9 

170 
94.4 
12.8 

191 
210" 
212 

12.8 
172 
185.2 
188 
164.4 

169.3 
94.2 
12.8 

191 
210% 
212 

12.8 
172 
187 
175 

Shorted 



Table 38. Test cell data 
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E53 
E54 
E55 
E5 6 
E57 
E58 
E59 
E60 
E6 1 
E62 

E63 

E64 

E6 5 

2 
3 
3 
3 
3 
4 
4 
4 
4 
5 

5 

5 

5 

cell 

SN 

179 
182.5 
182.5 
182.5 
182.5 
177.5 
177.5 
177.5 
177.5 
158.8 

158.8 

158.8 

158.8 

Floated 

Floated 

Floated 

Floated 

I 

config- 

uration 

168 
174 
175 
174 
174 
169 
169 
169 
168 
167 

179 

178 

165 

In. 

Fourth 

output 

01 10 A, 

A-h 

Sixth 

input 

at 2 A, 

A-h 

94.1 
95.4 
95.9 
95.4 
95.4 
95.3 
95.3 
95.3 
94.6 

I 

Sixth 

output 

at 10 A, 

A-h 

Fifth 

input 

at 2 A, 

A-h 

1.489 
1.454 
1.484 
1.492 
1.490 
1.429 
1.447 
1.464 
1.448 

Fifth 

output 

at 10 A, 

A-h 

13.5 
11.0 
11.0 
11 .O 
11.0 
12.3 
12.3 
12.3 
12.3 
11.0~ 

11.0~ 

11.0~ 

11.0' 

I I 

Volume 

of KOH a! 
discharge, 

in.3 

Volume 

Of 

in.3 

178.8 
195.7 
187.5 
186.6 
189.9 
183.5 
183.5 
181.5 
180.9 
151 

at 5 A 
156 

at 5 A 
146 

at 5 A 
169 

at 5 A 

Eighth 

input 

at 2 A, 

A-h 

Seventh 

input 

at 2 A, 

A-h 

180 
187.5 
196 
187.5 
188.5 
181.5 
183.5 
182.5 
179.5 
143.6 

158 

149 

167.4 

Seventh 
Output' 

A-h 

163.5 
183 
187.5 
183 
183 
166.3 
166.3 
170.5 
166.3 
159.4 

150.9 

155.1 

159.4 

171 
187 
188 
189 
186 
167 
169 
173 
169 
163 

153 

157 

158 

169.7 
169 
170 
168 
168 
160 
160 
160 
160 
164.6 

at 2 A 
171 

at 2 A 
171 

at 2 A 
171 

at 2 A 



j. Optimization of charge accepta.nce. Further improve- 
ment in charge acceptance was sought by constructing 
and testing cells with the following variations from 
standard: 

(1) Positive plate density equal to 89% of standard. 

(2) Positive plate density equal to 79% of standard. 

(3) Four layers of cellophane separator. 

(4) Three layers of fibrous sausage casing separator. 

(5) Increased negative to positive ratio, EM-312 wicks, 
cellophane wick shields. 

Results of charge-discharge tests with these cells are 
tabulated in Table 38. All configurations gave acceptable 
performance, but configurations three and four were 
ruled out because of inability to detect separator im- 
perfections with available equipment. Characteristics 
were determined for standard as well as 89 and 79% 
of standard positive plates and the data are shown in 
Table 39 and Fig. 76. The good performance of the low 
density (79% of standard) plate with its high porosity 
and resultant high electrolyte retention was significant. 

7c. Conclusions and design changes. The conclusions 
and design changes resulting from the charge test pro- 
gram were as follows: 

(1) The wetting characteristics of nylon was estab- 
lished as inadequate. 

(2) The use of cellophane as exclusive separator 
material was adopted; owing to the need for an 
increased electrolyte diffusion rate, the number of 
cellophane layers had to be reduced from eight to 
a lesser number. 

Table 39. Positive plate characteristics 

Characteristic 

-.- 0.8 TIMES STANDARD DENSITY 

T 

0 - 1  1 - 5  5 - 1 0  1 0 - 2 0  2 0 - 3 0  3 0 - 5 0  50-100 

100 

80 

PORE SIZE, p m  

STANDARD DENSITY 
--- 0.9 TIMES STANDARD DENSITY - 

Fig. 76. Positive plate pore size distribution 

(3) Six layers of cellophane separator permitted charg- 
ing to full capacity and provided sufficient relia- 
bility. This number of layers was used in the 
Surueyor main battery. 

(4) The manufacturing process for the negative plate 
was modified to yield plates with a more uniform 
density distribution. 

(5) The lighter and more porous, 0.8 density, positive 
plate in conjunction with six layers of cellophane 
separator produced excellent results because the 
more porous positive plate with its ability to retain 
more electrolyte compensated for the reduced dif- 
fusion rate of electrolyte through six layers of 
separator. This combination (No. 2, Table 40) was 
adopted for the Surveyor main battery. 

(6) Tests with wicks to increase the electrolyte diffu- 
sion rate were successful, but wicks were not 
recommended because of uncertainties concerning 
long-term performance. Instead, a more porous 
positive plate was used to assure the presence of 
sufficient electrolyte at this plate. 

(7) The amount of electrolyte was increased from 11.8 
to 12.5 in.3 

3. Discharge tests. A considerable number of dis- 
charge tests were performed on prototype batteries with 
emphasis on determining their pulse capability over the 
temperature range from 0 to 125OF. 

a. Constant current discharge. A typical discharge 
curve for a prototype battery is shown in Fig. 77. In 
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Table 40. Charged stand test data for prototype model cells 

DISCHARGE, A-h 

Fig. 77. Battery potential vs ampere-hour capacity at several temperatures for prototype battery 
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Fig. 78. Range of discharge capacity (A-h) data vs Fig. 79. Voltage regulation of fully charged engineering 
temperature for prototype batteries test battery after 85-A, 5-s pulse 
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general, this test did not reveal any major departure 40 

from similar tests with experimental model batteries. 
A plot of discharge capacity as a function of temperature 
(Fig. 78) indicates a relatively wide spread among proto- 
type batteries in discharge capacity, that may be partly 
due to design changes. 

35 

b. High rate discharge. The final revision of the battery 
requirements called for a battery discharge sweep in 
which a current sweep from 0 to 100 A was to be per- 
formed at a sweep rate not to exceed 10 s at ambient 
temperature. The potential at the load side of the mating 
electrical connector of the battery receptacle was to be 30 

between 17.5 and 26.0 V. An equivalent test was per- 
formed by ESB, by drawing 85 A from the fully charged 
battery for a time not to exceed 10 s. Figure 79 shows a 
graphic record of a high-rate discharge, in which the 
battery furnished two 5-s, 85-A pulses; the minimum 
potential of 19.0 V was .well above the allowable mini- 25 

mum of 17.5 V. 

Sweeps not exceeding 10 s duration were performed by 
HAC at ambient temperatures ranging from 0 to 12S°F 
with the batteries at various states of charge. The results : 
are presented in Figs. 80-83. The prototype battery whose 2 20 
output is shown in Fig. 80 was unable to deliver 85 A at 
the low temperature. 

SECOND PULSE 
19.0 v 

200 
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160 
LOWEST 

2 z 
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Qu 120 
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5 

40 
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- 

0 
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0 40 BATTERY TEMPERATURE, 80 OF 120 1M) :I 10 20 BATTERY POTENTIAL, V 30 40 
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25 

> 
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I- 

f 
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k 
10 

2 
5 

0 
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DISCHARGE CURRENT, A 

Fig. 80. High current sweep on prototype battery 
in chamber at 0°F temperature 

20 

10 

0 
0 20 40 60 80 100 

DISCHARGE CURRENT, A 

Fig. 81. High current sweep on prototype battery in 
chamber at 40°F temperature 

30 1 I -AFTER DISCHARGE OF 20 A-h 1 
I BATTERY TEMPERATURE 75OF 1 I 

DISCHARGE CURRENT. A 

0 

Fig. 82. High current sweep on prototype battery 
at ambient temperature 

POTENTIAL 

30 
AFTER DISCHARGE OF 45 A-l: 

DISCHARGE OF 81 A-h 
BATTERY TEMPERATURE 136'~ 

I 

0 20 40 60 80 100 

BATTERY TEMPERATURE 140°F 

0 20 40 60 80 1 00 

DISCHARGE CURRENT, A 

Fig. 83. High current sweep on prototype battery 
in chamber at 125 OF temperature 

Battery potentials for high rate discharge from the 
upper and lower plateau, respectively, for another battery 
is shown in Figs. 84 and 85. Comparison of the various 
graphs from low temperature sweeps shows a consider- 
able range of potentials that may in part be due to design 
differences (see Table 27). 

c. Charged sta,n.d loss. Charged stand loss of experi- 
mental model cells has been treated in Subsection 111-B-2. 
Similar tests were also run on prototype cells and the 
results are indicated in Table 40 and Fig. 86. The charged 
stand capacity loss rate of the prototype model cell at 
12S°F was equal to or less than that of the experimental 
model cell, while at 160°F, the loss rate of the prototype 
model was much greater. The initial capacity loss, 
observed on the experimental model cell at 125 and 
160°F, did not occur on the prototype model cell. 
Comparison of stand loss for a high rate cell, the experi- 
mental model cell, and the prototype model cell indicated 
a similarity between the high-rate cell and the prototype 
cell, whereas the experimental model cell acted like a 
lower-rate cell. 

This difference in behavior is probably due to the use 
of higher porosity positive plates with greater electrolyte 
retension in the prototype cell, as contrasted to the ex- 
perimental model cell, and an improved separator system. 

d.  Direct ctcrrent impedance. From high rate sweeps, 
dc impedances were calculated for several states of 
charge. In contrast to experimental cell data, presented 
in Subsection 111-B-4, these results are of greater validity 
as the rapid sweep prevented a major temperature rise. 
Results for an ambient temperature test are shown in 
Fig. 87. 
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DISCHARGE CURRENT, A 

Fig. 84. Prototype battery discharge characteristics 
for upper plateau 
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DISCHARGE CURRENT, A 

23 

Fig. 85. Prototype battery discharge characteristics 
for lower plateau 

TEMPERATURES REFER TO BATTERY 



S T O R A G E  TEMPERATURE, OF 

Fig. 86. Effect of charged stand temperature on 
capacity loss rate for prototype model cells 

CURRENT, A 

Fig. 87. Voltage vs current for 10-s high current 

sweep with prototype battery 

e. Heat generntion. Heat generation during discharge 
was calculated and the resultant estimates are plotted in 
Fig. 88. Such data are vital to a determination of the 
thermal behavior of the spacecraft. Later calorimetric 
measurements provided more accurate heat generation 
rates. 

f .  Batte1.y discharge &ciency. Based on matrix tests 
and additional engineering test data, a battery capacity 
model was formulated. The model expresses the first 
discharge capacity following flight acceptance testing in 
terms of the first charge capacity and the discharge 
efficiency: 

where 

(A-h), = first discharge capacity, A-h 

7 = discharge efficiency, % 

(A-h)i = first charge input, A-h 

The discharge efficiency, 7, was determined statistically 
from battery data and is summarized in Table 41. 
Batteries were charged at 2 A and discharged at 7 A, 
at a temperature of 70 *S0F. 

The efficiency, 7, is taken as 7 = 97.2 21.29% (3cr) 
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Allowing for instrumentation errors of +3%, the first 
discharge capacity in ampere-hours becomes 

The value for (A-h), is determined as part of the battery 
flight acceptance testing. 

4. Cycle life tests. A cycle life test was performed on 
an engineering test battery where charging took place 
at 2.0 A, 1.0 A, and float with a cutoff potential of 27.3 V; 
discharge was at the 7.0-A rate to a 17.5-V cutoff and the 
test temperature was ambient. Both ampere-hour input 
and ampere-hour output are shown as a function of the 
number of cycles in Fig. 89, and it is to be noted that 
both degraded at the average rate of 2.5 A-h per cycle. 
The battery failed due to a shorted cell after 22 cycles. 
There appears to be a trend toward a higher 2-A charge 
contribution as the battery ages under cycling. Similar 
watt-hour data are shown in Fig. 90, and average watt- 
hour degradation rates are included. The difference in 
slopes (watt-hours/cycle) between charge and discharge 
data may not be real. The life of 22 cycles is well above 
minimum requirements, but the cycle regime did not 
simulate the intended use. The lower half of Fig. 89 
presents the contribution that the charge a t  the 2-A rate 
makes to the total charge. 

CURRENT, A 

Fig. 88. Calculated heat generation in prototype 
battery during discharge 

Table 41. Main battery discharge efficiency summary 

CHARGE CONDITIONS: 
180 CUTOFF POTENTIAL: 27.3 V 

CURRENTS: 2.0 A, 1 .O A, AND 

160 

140 

120 

100 

90 

80 
0 5 10 15 20 25 30 35 40 

CYCLES 

200 

Fig. 89. Cycle life data for prototype battery- 
ampere-hour data 

I 

TEMPERATURE: AMBIENT 1 

JPL TECHNICAL MEMORANDUM 33-432 63 



Fig. 91. Surveyor battery in HAC vibration test facility 

CYCLES 

Fig. 90. Cycle life data for prototype battery-watt-hour 
data 

C. Type Approval Tests 

Failure of prototype batteries to pass type approval 
vibration tests led to an intensive development effort 
which is discussed in the subsequent paragraphs. 

1.  Vibration problems. Failure of a number of proto- 
type batteries to pass type approval vibration tests was 
attributed to breakage of lug wires and positive plate 
fracture. Such vibration tests were performed in facilities 
that were adapted to testing the Suvveyor main battery. 
The HAC battery vibration facility is depicted in Fig. 91. 
A prototype battery, with attached accelerometers, is 
shown installed in the vibration fixture that is attached 
to the vibration table. 

Resolution of the vibration-induced failures was 
achieved by a two-phase test program, with one phase 
devoted to solving the wire breakage problem, the other 
toward solving the positive plate fracture problem. 

a. Wi re  breakage. Fourteen types of test cells were 
designed and fabricated with the object of determining 
the most vibration-resistant cell configuration, commen- 

surate with the need to minimize weight. Pertinent char- 
acteristics of the test cells are summarized in Table 42. 

Two cells of each configuration were subjected to the 
required vibration test (see Subsection 11-D-4) and con- 
figurations 1, 3,6, 11, and 14 successfully passed this test. 
On the basis of minimum weight, ease of manufacture, 
reproducibility, and minimum change to the cell pack 
design, configuration 14 was selected as a tentative 
solution to the problem. The weight increase associated 

Table 42. Configuration characteristics 
of vibration test cellsa 

Free space ratio equal to 2.92 

Free space ratio equal to 2.92 

PVA binder in negative 

Loop in both positive and negative lug wires 

Free space ratio equal to 2.92 

PVA binder in negative 

Loop in lug wires of both plates 

Three grids in negative 
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Table 42 (csntd) with this design was 0.5 Ib, or an increase in battery 
weight from 46.0 to 46.5 Ib. 

Test cell 
configuration 

4 

5 

6 

7 

8 

Prototype batteries containing cells of configuration 14 
were constructed and subjected to the same vibration 
test, but a number of cells failed. The cause of the failure 
was determined to be breakage of lug wires as a result 
of displacement of positive plates away from the plastic 
struts, and negative plate displacement. Finally, a third 
group of test cells was designed, fabricated, and tested 
to determine their ability to withstand the vibration envi- 
ronment. The types of cells are summarized in Table 43. 
The results of the vibration test were satisfactory for all 
cells. Vibration testing and teardown of cells (Table 44) 
showed cell SK 8497-14 to have suffered no damage at all 
and this configuration was selected for future Survegor 
prototype batteries. The design necessitated a 4% re- 
duction in the amount of positive (limiting electrode) 
active material, but produced no increase in weight. 

Characteristics 

Both lug wires looped 

Free space ratio equal to 2.37 

Both lug wires looped 

Free space ratio equal to 2.92 

Three grids in negative 

Free space ratio equal to 2.92 

Pot bottom of separators 

0.01 0 silver strips between positives 

Free space ratio equal to 2.92 

Both lug wires looped 

Three grids in negative 

Wrap  negatives in cellophane 

Free space ratio equal to 2.92 

Absorbers at edge o f  cell pack 

PVA binder in negative 

Table 43. Configuration changes to vibration 

test cells 

Both lug wires looped 

Three grids in negative 

Free space ratio equal to 2.92 

Free space ratio equal to  2.92 

Pot top o f  separators 

PVA binder in negative 

Free space ratio equal to 2.92 

0.25 X 0.06 in. silver lug to anchor positive plate 

0.25 X 0.06 in. polystyrene strip to onchor other 
side of positive plate to cell case 

Free space ratio equal to 2.92 

PVA binder in negative 

Bottom o f  separator potted 

0.01 0 silver strips between positives 

Plastic halddown in "I" fold 

Absorbers a t  edge o f  cell pack 

Free space ratio equal to 2.92 

0.25 X 0.60 in. silver lug to anchor positive plate 

Free space ratio equal to 2.92 

Both lug wires looped 

0.25 X 0.062 in. polystyrene strut on both sides o f  

the cell pack to increase pack tightness 

The thickness of o portion o f  the positive plate strut 
was reduced to make the strut more flexible and 
reduce the stress on the positive plate during 
vibration motion 

A 35 X 40 mesh silver screen was substituted far the 
expanded silver grid in the positive plate 

The positive plate strut was extended so that i t  went 
from the top to the bottom o f  the plate 

An X frame o f  polystyrene was added to the nega- 
tive grid to make the negative plate less corn- 

the negative grid to make the negative plate less 

Same as SK8497-1 A 

Same as SK8497-8A 

Same as SK8497-7A 

Same as SK8497-1 A 

Same as SK8497-8A 

Same as SK8497-10A 
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Table 44. Effect of vibration on test cells (11) 

b. Positive plate f~actu~e.  Monoblocks of twelve me- acceptance proved to be satisfactory in view of the cell 
chanical configurations were designed and fabricated. construction. 
Pertinent design information is offered in Table 45. 

The teardown of typical cells after the test provided 

Table 45. Monoblock mechanical configurations the status report given in Table 47. 

Mechanical configuration 

371 design with 0.01 5 in. shim on internal cell case weld 

371 design with concave shim 0.01 5 in. ot center, 0.055 
in. at sides on internal cell case wall 

371 design with more flexible positive plate struts 

371 design with 36 X 45 meshscreen for positive plate grid 

371 design with full length strut on positive plate 

371 design with X-frame on negative plate 

371 design with full frame and X-frame on negative body 

Combination o f  -7, -8, and -1 

Combination o f  -1 and -8 

Combination o f  -7 and -1 0 

Following the vibration at type approval test levels, 
capacity tests were performed on the monoblocks to 
determine the second cycle charge acceptance. Table 46 
summarizes the charge acceptance data. The charge 

On the basis of these tests, configuration 14 was 
selected for future testing after incorporation of its 
features into prototype batteries. The resultant prototype 
batteries successfully passed type approval vibration tests, 
when subjected to such a test at HAC in accordance 
with test criteria specified earlier (Section 11). Vibration 
levels for this test are shown in Fig. 92. 

2. Shock test on cells. The cell structure, evolving 
from the solution to the vibration problem, provided for 
struts to restrain the positive plates from any movement. 

Table 46. Second cycle charge acceptance 
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Table 47. Type approval test vibration results inside cell 

Condition 

Positive plates fractured 

Negative plates slipped 

Negative material woshout 

20 

10 
Y 

$ 
m 5 
2 
0 

5 -1 2 

if; I I I I I 
Y RUN 26 WITH 2-rnin SWEEP O N  Z AXIS 

SlNUSOlDAL VIBRATION: 
1 5-21 Hz 0.75 in. DOUBLE AMPLITUDE - P 21-125 Hz 189 PEAK 

125-1500 Hz 4 g PEAK 

0 I I I 1 
1 2 5 10 20 50. 100 200 500 1000 2000 

FREQUENCY, Hz 

Fig. 92. Vibration levels in type approval test of prototype batteries 

Before this new feature was incorporated in the proto- are summarized in Table 48. Autopsy of the cell revealed 
type battery design, a shock test was run on a strut- that the cell pack had moved down into the cell jar and 
containing cell. This cell was shocked to destruction after that four of the positive plates had sheared away from 
11 (7- to 8-ms) shocks at a 68- to 98-g level. The results the struts, which were undamaged. This shock test was 

far more severe than specified in Section I1 and the 
design was considered successful. 

Table 48. Shock test of prototype cell 3. Thermal-vacuum tests. Of the first five batteries 
that passed the vibration and shock type approval tests, 
four subsequently passed the thermal-vacuum test, de- 
scribed in Subsection 11-D. 

D. Conclusions Concerning the Prototype Model  
Battery Program 

The prototype model battery program culminated in a 
battery that was adequate for the intended mission. 
During this phase of the program, a number of facts 
and deficiencies were revealed, including: 

(1) The concept of a manifold-battery was success- 
fully adapted, charged in the constant power mode 
to a cutoff, followed by a float charge. Pressure 
limits for the battery were established and a 
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provision for automatic charge termination in case 
of excessive pressure was implemented. 

(2) The low charge acceptance of early prototype 
batteries was pinpointed to the use of nylon sepa- 
rator that had poor wetting characteristics. 

(3) The use of six layers of cellophane as separator 
system proved adequate and was accepted for the 
flight battery. 

(4) A saving in weight was achieved by the develop- 
ment of a lighter, more porous positive plate. 

(5 )  The uniformity of the negative plates was improved 
by modification of the manufacturing process. 

(6) The use of wicks to reduce electrolyte depletion at 
the positive electrode during charge was shown to 
be feasible, but not adopted because of inadequate 
performance history. Instead, additional electrolyte 
was provided at the positive plate by increasing 
the plate porosity. 

(7) Type approval vibration tests produced severe 
battery damage in the form of breakage of lug 
wires and fracture of positive plates. These faults 
were corrected by: substituting a mesh silver 
screen for the expanded silver grid in the positive 
plate, strengthening the negative plate by adding a 
polystyrene X-frame to the negative grid, looping 
lug wires, and strutting positive plates. The result- 
ant batteries were generally capable of meeting all 
type approval tests including vibration, shock, and 
thermal-vacuum. 

VI. Flight Model Surveyor Main Battery 

The flight model Su,rveyo~* main battery was essentially 
identical to prototype batteries, SN X-37 and subsequent 
(see Table 27). For this reason, the description of the 
battery will not be repeated here. This section covers 
reporting, and evaluation, of tests that were run to pro- 
vide needed performance input, and the solutions to 
technical problems. 

A. Performance Tests 

This subsection presents some of the electrical per- 
formance data for the flight model battery. 

While the major test effort on the flight model battery 
dealt with flight approval and mission simulation tests, 
several smaller, but significant efforts consisting of charge 
and discharge tests involved: (1) establishment of a 

guide to safe operating limits, (2) discharge efficiency, 
and (3) effect of constant current charging to a lower 
cutoff potential on battery capacity. 

1.  Battery operating limits. Based on limited burst 
pressure tests, a graphic aid was prepared to define safe 
battery temperature and pressure limits for test personnel. 
In these tests monoblocks, with supported sides, were 
warmed to the desired temperature, and then pressurized 
slowly with helium until a leak developed. The pressure 
at that instant served as the basis for specifying abort 
conditions. The resultant visual aid, shown in Fig. 93, 
was applicable to flight batteries, SN 36 and subsequent. 

2. Discharge eficiency. The battery discharge effi- 
ciency as discussed for the prototype model (Subsection 
V-B-3), has also been determined for a number of flight 
batteries. However, the term (A-h), was redefined to 
provide a more accurate efficiency by accounting for 
stand loss and certain changes in capacity due to testing. 

0 20 40 60 80 

PRESSURE, psia 

140 

Fig. 93. Surveyor main battery-alarm, action, abort 

ABORT 
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Table 49. Results of flight battery discharge efficiency tests 

33 178.0 7.0 25.3 2.0 5 188.4 184.7 98.0 
34 171.6 7.0 31.4 2.9 5 188.1 183.3 97.0 

nBatteries discharged a t  7.0 A, temperature 75 f 5 O F .  

The revised definition became: 3. Charge cutof. I11 order to determine the conse- 

= First charge input from vendor's data (lowest 
monoblock) in ampere-hours, minus stand loss 
(3% per month at 7s0F, 1 %  at 30°F), plus 
HAC charge and float charge, minus 5 A-h for 
capacity used during vibration testing, minus 
stand loss to time of use (plus top charge, if any). 

Results of the redetermination of battery discharge 
efficiency are summarized in Table 49. The battery 
discharge efficiency was derived statistically to be  
95.3 ~ 3 . 8 2 %  (+ 2a) for discharge at 75OF. For each 
5°F  above 75"F, the efficiency was considered to de- 
grade by 1 % .  

CUTOFF POTENTIAL, V 

Fig. 94. Charge input vs cutoff potential for flight 
model Surveyor main battery 

quences of charging to a lower cutoff potential than the 
adopted value of 27.3 V, and then float-charging at 
the lower potential, the charge input resulting from 
constant current charging at 2.0 A to selected cutoff 
potentials was obtained for twelve batteries. The average 
value is plotted in Fig. 94. I t  is significant that below 
27.2 V, a reduction in charge input was obtained. I t  was 
concluded that charging to a cutoff potential as low as 
26.9 V with subsequent float-charge at  that potential 
would consume excessive time and a constant current 
charge to 27.3 V cutoff with subsequent float-charge at 
27.0 (+0.1, -0) V was used for all flight batteries, from 
SN 36 and subsequent. Float-charge at the lower poten- 
tial resulted in maximum pressures below 25 psia, com- 
pared to a limit of 45 psia under the 27.3-V float-charge. 
This reduction in pressure increased the safety margin 
greatly. Available charging time was sufficient to float- 
charge the battery to full capacity when limited to 27.0 V. 

B. Problem Areas and Solutions 

1 .  Low pulse potential problem. As a part of accept- 
ance testing of batteries at ESB, discharge pulses of 
85 A for 10 s were applied. Batteries, SN 43-SN 47, fell 
below the minimum permissible potential of 17.5 V with 
an average five-battery value of 16.8 V, compared to 
much higher values from previous batteries (18.5-19.5 V). 
Owing to the great need for batteries by the Surveyor 
program at that time, the batteries were accepted on a 
waiver basis. A fast (< 10s) 0-100 A sweep at HAC on 
the fully charged batteries gave minimum potentials 
ranging from 15.80 to 16.92 V with an average of 16.2 V. 
Critical cell components that were considered suspects 
for the deficiency of over 2 V were: 

(1) Positive plates. 

(2) Negative plates. 
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(3) Cellophane separator. 

(4) Electrolyte. 

(5) Plate leads. 

(6) Cell jars. 

Table 50 presents a summary of cell components for 
the last normal battery (SN 42) and the substandard 
batteries (SN 4347). 

Table 50. Summary of critical cell components 

Negative plate lotsa 01 146M2 (47  only) 

(04145M5 in SN 34)  

Mercuric oxide lot 

(1 06 in battery SN 44 )  

a. Investigation of positive plates. Determination of 
a number of properties of silver powder (Table 51) 
showed that the positive plates from suspect lot 217 did 
not differ significantly in these properties from lots used 
in good batteries. Although surface area was believed to 
have a significant bearing on pulse discharge capability, 
the results of a surface area determination by the Brunauer, 
Emmett and Teller (BET) nitrogen absorption technique 
(Table 52) again showed that lot 217 was similar to 
the other lots. Although the 10% difference in surface 
area may be significant, an evaluation was not reported 

Table 51. Surface area determination of silver powder 

by ESB. Possibly, silver powder was ruled out as a source 
of the low voltage trouble on the basis of concurrent 
cell tests. 

The porosity of the positive plates was determined by 
their ability to absorb 40% potassium hydroxide elec- 
trolyte. The results are summarized in Table 53. The 
data indicate that both lots have essentially the same 
porosity. 

b. Investigation of negative plates. Only negative 
plates taken from lots 01146M1 and 01156M1 were 
common to all low performance batteries. Owing to the 
unavailability of additional plates from lot 01156M1, tests 
were performed using plates from lot 01146M1. The 
negative plate tests were a part of the cell tests described 
in subsequent paragraphs of this section. 

c. Investigation of cellophane separator. As indicated 
in Table 50, batteries SN 4347  were fabricated using a 
new lot of separator material-cellophane lot C-0356. 
A number of separator material properties were tested 
on dry material and also after immersion in 40% potas- 
sium hydroxide solution. Table 54 presents test results 
from five lots of cellophane separators. Results were not 
significantly different for lot C-0356. The test methods 
were basically those of Cooper and Fleischer (Ref. 2). A 
clear pattern did not emerge from these data to dis- 
tinguish lot C-0356 from the other lots. Differences within 
lots were partly sampling, and partly operator error. The 
magnitude of differences in the same lot was later estab- 
lished by tests on sixteen sheets from lot C-0318, where 
pore diameters ranged from 4.92 X in. to 6.41 X in. 

Tests on cellophane did not show lot C-0356 to be 
significantly different from other lots in the properties 
that were tested. However, the observed nonuniformity 
of material in a given lot was established and future 
specifications were tightened. 

d. Matrix (cell) test. The tests previously discussed, 
failed to isolate the cause of the encountered low volt- 
age. Cellophane was later isolated as the cause by an 
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Table 52. Silver lot characteristics 

Table 53. Porosity tests on positive plates 

196 

197 

198 

199 

204 

21 6~' 

2 1 7 ~  

21 8 

21 9 

222 

KOH absorbed, Ib 

electrochemical performance test of the cell components. 
This test used suspected components in combination 
with good components. The matrix of the components 
used is shown in Table 55. 

'JReject lot. 

blot used in Model 205 batteries having low pulse voltages. 

2206 

221 1 

2213 

221 5 

2223 

2282 

2285 

2286 

2292 

2297 

Results of discharge tests on the cells tested are sum- 
marized in Table 56. The difference in potential between 
cells A and B, and cells C and D, amounts to approxi- 
mately 1 V for a 14-cell battery. Cells C and D used 
cellophane from lot C-0356, while the other cells were 
made with cellophane from a different lot. Therefore, 
i t  was concluded that cellophane lot C-0356 was the 
cause of the low pulse discharge potential. 

e. Conclusimzs. The low pulse discharge potential was 
caused by some undefined fault in cellophane separator, 

0.01 6 

0.001 

0.01 0 

0.008 

0.005 

0.005 

0.006 

0.007 

0.01 1 

0.01 6 

lot C-0356. This cause was detected by a matrix cell test, 
whereas a number of physical measurements had failed 
to select the defective lot. Large differences in properties, 
such as pore size, existed in sheets from the same lot of 
cellophane. A more rigid inspection of cellophane was 
instituted as the result of this finding. The use of matrix 
cell tests is recommended as the most effective means 
for determining the cause of low pulse discharge potenials 
and other malperformances. 

2. Battery terminal potential problems from deletion 
of the auxiliary battery. With the decision to delete the 
auxiliary battery from spacecraft SC-5, SC-6 and SC-7, a 
marginal level of battery potential during the high power 
operations of terminal descent had to be evaluated. A 
detailed analysis of load and critical potential indicated 
a need for a battery potential minimum of 18.0 V to 
maintain proper system operation. 

0.0588 

0.0607 

0.0650 

0.0591 

0.0628 

0.0620 

0.0651 

0.0593 

0.0596 

0.0609 

During terminal descent with the radar altimeter and 
doppler velocity sensor (RADVS) on, the current demand 
was approximately 45 A with 20-ms pulses of approxi- 
mately 14 A superimposed at the time of retro release 
squib firing. A test was run simulating this condition, 
with somewhat larger currents, as depicted in Fig. 95. 
A total of 64 A-h were removed from a fully charged 
battery to use in performing this test. Results of the test, 
listed in Table 57, indicate that the main battery can 
provide the required current, if maintained at tempera- 
tures of 78-93°F. A more complete evaluation of the 
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0.267 

- 
0.236 

0.256 

0.228 

0.236 

0 

0 

0 

0 

0 

0.1 

0 

0 

0 

0 

0.2 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0 

0.1 

7.4 

6.9 

6.4 

4.9 

9.6 

7.0 

9.4 

9.1 

6.0 

4.9 

92.3 

92.9 

93.4 

95.0 

90.3 

92.8 

90.5 

90.8 

94.0 

95.0 



Table 54. Cellophane tests 

Table 55. Matrix for special test cells 

2 

3 

4 

5 

6 

%Suspected 

Positive plate lot 

Negative plate lot 

Table 56. Results of discharge tests on 
special test cells 

Dimensional changes, % 
Length 

Width 

Thickness 

Weight, 1 O6 X Ib/ine2 

Dry 

Wet  

Unit electrolyte 
Absorption, % 

Specific resistivity, ohm-in. 

Mean pore diameter, in. X 1 O8 

lot. 

Discharge rate, A 
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B 
C 

A 
B 
C 
A 
B 
A 
B 
C 

A 

B 
C 
A 

B 
C 

A 
B 
- 
- 
- 

3.6 
3.5 

3.2 
5.6 
4.0 

-3.8 
- 4.2 

240 
21 1 
250 

5.25 
5.25 
5.1 6 

20.6 
20.1 
19.8 

292 
282 
- 
- 
- 

3.8 
- 

5.2 
4.8 
- 

-3.4 
-3.8 
174 
150 
- 

5.20 
5.1 8 
- 

19.7 
20.0 
- 

281 
287 

27.9 
30.5 

8.83 

3.8 
- 

2.4 
1.5 
3.3 

-3.6 
-4.0 
222 
214 
240 

5.1 8 
5.20 
- 

19.7 
21 .O 
19.3 

280 
306 
- 
- 
- 

3.8 
- 

5.2 
4.2 
- 

-3.0 
-3.8 
255 
225 
- 

5.1 8 
5.1 5 
- 

19.2 
19.6 
- 

287 
281 

30.5 
30.5 

9.70 

3.9 
- 

3.8 
2.6 
- 

-4.0 
-4.2 

255 
182 
- 

5.30 
5.40 
- 

20.0 
21.6 
- 

277 
298 
- 
- 
- 



Table 57. Main battery test data 
for terminal descent phase 

8 =OPERATOR TIME T 5 5 

0 

83 

84 

87 

9 1 

93 

SC-3 

SC-4 

Fig. 95. Main battery pulse test data- 

main battery's capability to meet power requirements 
during Surueyors V, VI, and VII Missions is presented 
in Section VII. 

aValues during fifth pulse. bRerun of RADVS sirnulotion. 

8 1 

79  

69 

57 

56 

Under 120 

Under 120 

Under 120 

Under 120 

C. Materials and Process Investigations 

A limited test program was conducted to solve a 
plastics joining weakness. The results are summarized 
in the subsequent paragraphs. 

50 

50 

50 

50 

50 

41.5 

45.0 

43.0 

47.0 

1. Measurement of bond strength of cements. As a 
result of some failures of seals made with ESB's pro- 
prietary catalized polystyrene cement (PS-211), an in- 

vestigation was undertaken to determine the effect of 
temperature on the bond strength. 

18.8 

18.8 

18.8 

18.8 

18.9 

19.6 

19.2 

19.1 

18.4 

2. Calculution of bonding area, joining cover to four- 
cell monoblock. The shear bonding area and tensile 
bonding area restraining the Aat 205-1016 cover to the 
205-2013 four-cell molded monoblock cover is: 

Peripheral shear area 

2b 

2 

2 

2 

2 

Solar-thermal 

vacuum 

Solar-thermal 

vacuum 

Simulated 71 -h 
transit 

Simulated 71 -h 
transit 

Peripheral tensile area 78 

78 

78 

78 

78 

98 

93 

93 

93 

Cross member tensile area 

Using blue RMD-4511 polystyrene and PS-211 cement 
in conjunction with the above areas, the force necessary 
to lift the cover at 125, 150, and 170°F and the equiva- 
lent monoblock pressure over the 8.88 in.2 area were 
calculated as shown in Table 58. 

Table 58. Calculated strength for blue 
RMD-4511 IPS-21 1 joint 

3. Measurement of bond strength. The bond strength 
of blue and amber RMD-4511 specimens, joined by 
PS-211 and PS-282M proprietary cements, was deter- 
mined by ESB, Atlas Division, Mertztown, Pennsyl- 
vania, using butt  and lap test specimens pulled at 
0.25 in./min after equilibration at test temperatures at 
80, 125, 150, and 170°F. The results of these tests are 
shown in Tables 59 and 60, and graphically in Fig. 96. 
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Table 59. Effect of operating temperature on bond 
strength of catalyzed polystyrene cement: test I 

RMD-4511 PS-211 LAP 60 

Table 60. Effect of operating temperature on bond 
strength of catalyzed polystyrene cement: test I 

80 100 120 140 1 60 180 

PULL TEMPERATURE, OF 

.I50 for amber RMD-4511, and 0.09W.150 for blue 

Fig. 96. Bond strengths of catalyzed polystyrene cements 

(2) Measurement of the bond strength of selected 
polystyrenes and cements resulted in a strengthen- 
ing of the bond between the flat manifold cover 
and the molded monoblock cover; the superior 
material was amber RMD-4511 polystyrene. This 
improvement further increased the safety margin 

It is apparent that the amber polystyrene provides a during high temperature charge. 
superior high temperature bond with PS-211 cement. 
The materials specifications were changed accordingly (3) The battery discharge efficiency was determined 
from blue to amber polystyrene. as 95.3 23.82% (+-2a) for discharge at 75"F, 

with an estimated degradation of approximately 
D. Conclusions 1% for each 5°F above 75°F. 

Extensive mission simulation tests are reported in 
(4) In spite of the elimination of the auxiliary battery, 

Section VII. For this reason the work reported in this 
a test showed that the Surveyor main battery could section is limited. However, the following conclusions 
provide RADVS pulse requirements during termi- may be drawn: 
nal descent. 

(1) A change in float-charge potential from 27.3 to 
27.0 (f0.1,  -0.0) V resulted in lower gas pressure (5) The low potential during the flight acceptance 
during extended %oat-charge, thus providing an test 10 s, 0-100 A sweep, with a lot of five batteries 
increased safety margin for the battery without was shown to have been caused by an undefined 
seriously affecting the charge input of the battery. fault in cellophane separator material. 
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VII. Special Tests and Flight Performance of 
Flight Model Battery 

This section covers the lunar night survival study, low 
temperature operation, simulation of Surveyors V, VI, 
and VII Missions (A-21E program), solar-thermal- 
vacuum (STV) tests, and actual mission data. 

A. Lunar Night Survival Test 

The lunar night survival test was conducted to estab- 
lish the main battery performance anticipated during 
the lunar night and to predict lunar night survival capa- 
bility of the Surveyor main battery. Basically, the test 
program was a simulation of the anticipated Surveyor IV 
lunar night temperature-load profile. The test program 
consisted of sequences I and I1 with three batteries of 
various ages employed in each sequence. Sequence I was 
conducted with fully charged batteries, and sequence I1 
with discharged batteries. 

1.  Test program. Temperature profiles for the test 
sequences are summarized in Table 61. Figures 97 and 
98 show temperature profiles and electrical test specifi- 
cations for the sequences. 

2. Results. Table 62 summarizes battery history and 
ampere-hour capacity at various stages of the test. A 
summary of battery parameters is presented in Table 63. 

Table 61. Temperature profiles for lunar night 
survival test 

4 0 ° F  to - 1 6 5 ° F  (1  'F/h decrease) 

- 40 °F  to roam temperature (1  'F/h) 

Room temperature 

Lunar night simulation Room temperature to - 1  65°F at 5'F/h 

decrease followed by 5"F/h increase 

to -40°F,  at which point change to 

1 "F/h increase 

Figure 99 shows the potential, current rates, pressure, 
and temperature variations of the three batteries in 
sequence I with charge data at -40°F being shown in 
Fig. 100. Similar information for sequence I1 is provided 
in Figs. 101 and 102. At the completion of the lunar night 
survival test, the batteries were allowed to discharge 
continuously for 32 h at 2.0 A and subsequently for 
4 min at 50.0 A. During the 50.0-A discharge, four 20.0-A, 
20-ms pulses were superimposed in a RADVS simulation 
test to obtain a comparison with original flight acceptance 
(FA) test RADVS simulation data. Results of the RADVS 
simulation tests are summarized in Tables 64 and 65. 
The RADVS simulation consisted of discharging the 
battery at 50 (+15, -0) A for a minimum of 4 min with 
4-20 t 2 . 0  A, 20-ms pulses superimposed at 1, 2, 3, and 
4 min. The specified voltage at 50.0 A was 17.5 V 
minimum. 

3. Discussion. In spite of considerable differences in 
battery history for sequence I, the capacity values at the 
start and end of the test varied only slightly between 
batteries. The cell potential spread prior to the lunar 
night test varied from 0.012 to 0.124 V and 0.086 to 
0.124 V at the end of the test. Cell potential reversal 
occurred after approximately 108 A-h was removed from 
each battery and the temperature was approximately 
-31°F. Similar results were observed in test sequence 11. 
Variations among batteries in potential, discharge cur- 
rent rate, pressure and temperature were small, while 
the charge current and pressure variations were some- 
what larger. Potentials during RADVS simulation showed 
some degradation compared to values from FA test. 

In test sequence 11, battery open circuit potentials 
reached zero at approximately -147°F. The batteries 
were recharged successfully at -40°F at a programmed 
charge rate of 0.20-3.00 A with full recharge accom- 
plished at room temperature. The batteries in test se- 
quence I1 delivered from 82 to 93% of their pretest 
capacity when discharged at 0.23 A at 20°F. 

4. Conclusions and recommendations. Test data de- 
termined the following: 

(1) The batteries were capable of delivering a mini- 
mum of 155 A-h when discharged to 17.5 V at the 
0.76-A rate, at 20°F. 

(2) Discharge at a 0.23 A rate in a constantly dropping 
temperature environment ceased at about -33°F. 

(3) The open circuit potential in a constantly dropping 
temperature environment fell to 0 V at about 
-147°F. 
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LUNAR NIGHT, h LUNAR DAY, h 

Fig. 97. Lunar night survival test, sequence I 
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LUNAR NIGHT, h LUNAR DAY, h 

Fig. 98. Lunar night survival test, sequence II 
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Table 62. Battery history, lunar night survival test 

JPL TECHNICAL MEMORANDUM 33-432 

Previous usage 

Flight acceptance cold storage 

119 

1 24 

SC-6 MSIEMI recharge 

Flight acceptance SC-5 com- 

bined system test discharge- 

charge 

Flight acceptance cold storoge 

float charge 

Sequence II 

73 

56 

98 

81 

*Placed on spacecraft, but was not used. 

Battery SN 

105 

116 

128 

Total capacity, A-h 

Previous usage 

Flight acceptance cold storage 

Flight acceptance 

Flight acceptance SC-6 solar- 

thermal-vacuuma 

Age (days) of battery at 

A t  

sfarl 

of test 

176 

1 7 7  

188 

184 

188 

Starl 

of 

test 

21 0 

110 

80 

End 

of 

test 

230 

130 

100 

At  20°F, 
0.75 A 

164 

156 

155 

108 

109 

At room tem- 

perature 7.0 A 

after 20°F 
discharge 

(approximate) 

170 

170 

169 

107 

100 

End of 

lunar 

night test 

183 

184 

179 

183 

179 



Table 63. Summary of battery parameters, 
lunar night survival test 

(4) After warmup to -40°F, the batteries were suc- 
cessfully charged at a programmed rate of 0.20- 
3.0 A over a 5-h period, followed by constant 
potential charging during warmup from -40°F to 
room temperature. 

(5) After full recharge, the batteries passed the RADVS 
simulation test, although minimum potentials were 
lower than similar prelunar night simulation 
RADVS results. 

(6) The performance of the six batteries is grouped 
about a small distribution in potential, capacity, 
charge and discharge current, and pressure. 

(7) The lunar night survival test led to the recom- 
mendations that the battery should be fully 
charged going into the lunar night and that com- 
plete depletion of the battery during the lunar 
night should be avoided. At the spacecraft basic 
load of 0.23 A, the battery zero power point was 
approximately - 33 OF. Thermal conditioning of 
the battery was not required since the low tem- 
perature tests confirmed battery survival during 
lunar night conditions. 

B. Low Temperature Operation 

Following the successful reawakening of Sziro.ueyor I 
through several lunar days, further studies were under- 
taken to obtain low temperature operating information 
on an almost fully discharged battery, simulating the end 
of lunar night conditions. 

1.  Test procedure. The test procedure involved: 

(1) Discharging the fully charged battery at the 2.0-A 
rate to the cutoff potential (17.5 V), while the 
battery temperature was reduced at the rate of 
approximately 5" F/h. 

(2) Continuing the cooldown to a battery temperature 
of -40°F. 

(3) Discharging the battery at 1.0 A for 60 s, then 
stabilizing the battery temperature at -40°F. 

(4) Pulse charging the battery with 60-s pulses at 0.5, 
1.0, 2.0 and 3.0 A at -40°F. 

(5) Performing (4) at -20°F. 

(6) Performing (4) at O°F. 

(7) Charging the battery at O°F with a constant cur- 
rent of 1.5 A to 27.3-V cutoff. 

(8) Float-charging the battery at O°F for 13.5 h, 

(9) Discharging the battery at O°F with 60-s pulses 
of 0.5, 2.0, 7.0, and 12.0 A and with 60 s of TV 
simulation pulses (3.2 A for 1.6 s) and 20 simulated 
antenna/solar panel positioner (A/SPP) pulses 
(12 A for 50 ms). 

(10) Repeating (9) at -20°F. 

(11) Repeating (9) at -40°F. 
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Fig. 99. Lunar night survival test, sequence 1, on Surveyor main batteries 115, 119, and 124 

CHARGE TIME, h 

Fig. 100. Voltage rise during programmed charge at -40°F lunar night survival test 
sequence I, Surveyor main batteries 115, 119, and 124 
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Fig. 101. Lunar night survival test sequence 11, Surveyor V main batteries 105, 116, and 119 
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Fig. 102. Voltage rise during programmed charge at 40°F, lunar night survival test sequence II, Surveyor main 
batteries 105, 11 6, and 128 
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Table 64. Sequence I, RADVS simulation 

Table 65. Sequence I I ,  RADVS simulation 

Battery age, days 

Ampere hours removed 

Battery temperature at  

start of test, O F  

Battery temperature at  

end of test, OF 

Voltage, V 

Open circuit 

Start, 50 
At 1 min, 50 A 

Pulse 1, 70 A 

At 2 min, 50 A 

Pulse 2, 70 A 

At 3 min, 50 A 

Pulse 3,70 A 

At 4 min, 50 A 

Pulse 4, 70 A 

JPL TECHNICAL MEMORANDUM 33-432 

Test date 

Battery age, days 

Ampere hours removed 

Battery temperature at 

start o f  test, OF 

Battery temperature at 

end o f  test, OF 

Voltage, V 

Open circuit 

Start, 50 A 

At 1 min, 50 A 

Pulse 1, 70 A 

At  2 min, 50 A 

Pulse 2, 70 A 

At 3 min, 50 A 

Pulse 3, 70 A 

At 4 min, 50 A 

Pulse 4, 70 A 

*Post lunar night survival test dato. 

bCurrent 51.6 A for battery SN 115 first FA test. 

79 

22.3 1 
19.91 
19.25 
18.35 
19.1 9 
18.31 
19.1 6 
18.29 
19.14 
18.28 

Battery SN 

78 

22.30 
19.80 
18.70 
17.90 
18.79 
17.75 
18.75 
17.80 
18.70 
17.80 

76 

22.1 0 
20.1 0 
20.00 
19.20 
19.80 
19.00 
19.60 
18.80 
19.50 
18.65 

128' 105 116 

711 2/67 

47 

65.00 

75 

77 

22.42 
20.00 
19.61 

18.80 
19.40 
18.60 
19.20 
18.40 
19.08 
18.21 

3/5/67 

57 

64.00 

76 

76 

22.00 
19.80 
19.20 

18.40 
19.1 0 
18.30 
19.00 
18.30 
19.00 
18.30 

78 

22.30 
19.80 
18.95 
18.00 
18.90 
17.95 
18.85 
17.90 
18.84 
17.90 

6/6/67 

46 

64.00 

75 

76 

22.50 
20.05 
19.80 

19.00 
19.60 
18.80 
19.45 
18.65 
19.30 
18.50 

8130167 

97 

64.48 

75 

77 

22.30 
20.00 
19.30 

18.45 
19.25 
18.40 
19.20 
18.40 
19.20 
18.40 

8/30/67~ 

234 

58.70 

75 

76 

22.35 
20.00 
19.1 5 

18.25 
19.05 
18.30 
19.00 
18.30 
19.00 
18.20 

8/30/67 

130 

65.27 

75 

76 

22.20 
19.90 
18.80 

17.90 
18.70 
17.80 
18.60 
17.90 
18.60 
17.75 

78 

22.25 
20.2 
19.67 
18.85 
19.45 
18.65 
19.35 
18.55 
19.30 
18.50 

79 

22.30 
20.00 
19.20 
18.35 
19.14 
18.30 
19.1 0 
18.20 
19.09 
18.28 



ELAPSED TIME, h 

Fig. 103. Comparison of battery discharged at room temperature and voltage discharge characteristics of battery 
99 at temperature reduced to -40°F at S°F per hour 

2. Results. Battery discharge data for this test and for Table 66. Cell potentials during -40°F, 1.0 A discharge 
a similar battery, discharged under normal temperature 
environment, are shown in Fig. 103. At the 2.0-A dis- 
charge rate, 42.5 A-h were withdrawn, at which time the 
battery potential reached 15.0 V and the battery tem- 
perature 4°F. Discharging the battery at 1.0 A and 
-40°F resulted in several cell reversals, as indicated 
by data in Table 66 and the discharge was terminated. 
Results from the pulse charging (steps 4, 5, and 6) are 
summarized in Figs. 104-107. Constant current and float 
charging at O°F (steps 7 and 8) provided an input of 
13.0 A-h, where the float charge contributed 5.25 A-h. 
Initial and final (60 s) discharge potentials for steps 9, 
10, and 11 are plotted in Figs. 108 and 109. Figure 110 
superimposes the discharge data on an earlier potential- 
current curve to permit a comparison with results from 
higher temperature runs. A rough approximation of dc 
impedance values for low temperature operation on the 
lower plateau was made by assuming a linear relation- 
ship between potential and current and the results are 
tabulated in Table 67. 

charge at O°F. No excessive pressure buildup was ob- 
3. Conclusions. A withdrawal of 42.5 A-h at the 2.0-A served during the low temperature operation test. During 

rate to cutoff potential compared to a range of 45-97 A-h, low temperature charging, the battery terminal potential 
predicted on the basis of earlier tests (Fig. 111) for dis- was found to vary directly with charging current and 
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MAIN BATTERY CURRENT, A 

Fig. 104. Low temperature, fully discharged, initial 
charge voltage 

29 

28 

MAIN BATTERY CURRENT, A 

Fig. 105. Battery 99 low temperature charge, fully 
discharged, charge voltage after 60  s 

Fig. 106. Low temperature charge, fully discharged, 
initial charge voltage 

60-s PULSES 

-50 -40 -30 -20 -10 0 

TEMPERATURE, OF 

-4w F, 
I 

/ 
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TEMPERATURE, "F 

Fig. 107. Low temperature charge, fully discharged, 
charge voltage after 60 s 

inversely with battery temperature. During low tempera- 
ture discharge, the battery terminal potential varied in- 
versely with current and temperature and short pulse 
potentials were slightly higher than 60-s pulse potentials. 
The Surveyor battery has shown a limited capability to 
operate at temperatures below 0°F with some operation 
at -40°F indicated. 

M A l N  BATTERY CURRENT, A 

Fig. 108. Battery 99 low temperature discharge, low 
state of charge, initial discharge voltage 

M A l N  BATTERY CURRENT, A 

Fig. 109. Battery 99 low temperature discharge, low 
state of charge, discharge voltage after 60 s 

C. The A-21 E Program viding pulse loads during terminal descent. However, 
The decision to delete the auxiliary battery for SC-5, removal of the auxiliary battery caused the main battery 

SC-6 and SC-7 was discussed in Section VI. The early to run at a higher temperature and with lower potential 
tests indicated that the main battery was capable of pro- during terminal descent. The reliability of the spacecraft 
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Table 67. Approximate dc impedance values 

Fig. 11 1. Battery capacity vs temperature at discharge 
rates of 0.5-1 0.0 A 

MAIN BATTERY CURRENT, A 

Fig. 1 10. Main battery voltage vs discharge current 
at  various battery temperatures 

E  = cell potential with I  amperes flowing 

EH = the thermal potential 

would be reduced during transit by the elimination of 
the redundant energy sources. Therefore, a program was where 

undertaken to: (1) determine the thermal behavior of the AH =heat of formation 
battery, (2) perform a test to establish Surveyor main 
battery parameters during a typical Surueyor V, VI and n = the number of electrons in the electrode 
VII Mission operation, and (3) institute increased process reaction 
control at ESB as a means of increasing the battery 
reliability. F = the value of the Faraday. 

1.  Thermal behavior of the battery (Ref. 3). The heat Internal heat generation patterns were investigated by 
generation rate is given as a function of cell potential means of batteries, equipped with internal thermo- 
and current by the relation couples. Heat dissipation rates from the battery surface 

were measured with a specially constructed isothermal 
q = I ( E , - E , )  (1) calorimeter. Both investigations will be treated in sub- 

sequent sections of this report. 
where 

a. Determination of internal heat generation patterns. q  = heat output rate 
Two Surveyor main batteries ( S N  97 and SN 98) were 

I = current in amperes specially fabricated with a total of ten copper-constantan 
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thermocouples, located at strategic positions, to permit 
the recording of negative plate and periphery tempera- 
ture variations as a function of time while the batteries 
experienced a special test sequence. Four thermocouples 
were installed in the negative plate of cells 3,6,9 and 12. 
Six thermocouples measured the peripheral temperature 
pattern by virtue of their placement between the outer 
cell walls and the battery canister. A diagram of thermo- 
couple locations is shown in Figs. 112 and 113. 

POLYSTYRENE 
FRAME 

Fig. 1 12. Negative plate assembly 

Fig. 113. Location of thermocouples 

Test procedure. The sequence in these thermal tests 
is summarized in Tables 68 and 69. The steps in the test 
sequences were generally separated by open-circuit 

Table 68. Test sequence, SN 97 

Discharge at 1.0 A 

Simulate RADVS with approximately 100 A-h remaining 

Place on open circuit 

Charge at 2.0 A and float 

Discharge at  3.0 A and repeat step 2A 

Place on open circuit 

Charge at 2.5 A 

Discharge at 5.0 A and repeat step 2A 

Discharge at 5.0 A to 17.5 V 

Table 69. Test sequence, SN 98 

Simulate RADVS with approximately 100 A-h remaining 

Extended 2A 

Place on open circuit 

Charge at 1.0 A and float 

Discharge at 4.0 A and repeat Step 2A 

Discharge at 4.0 A to 17.5 V 

Charge at 1.5 A 

Discharge at 5.0 A and repeat Step 2A 

Discharge at 5.0 A to 17.5 V 
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periods. In principle, the thermal tests consisted of a 
number of room temperature charge-discharge cycles, 
representing average spacecraft loads from 1.0 to 5.0 A 
and high discharge rates of 18.0 A for five or more 
minutes, followed by RADVS simulation (50.0-A dis- 
charge with two 20 ms, 20.0-A pulses superimposed on 
the 50.0-A current). 

Results. The data for SN 97 are summarized in Fig. 114, 
which represents average thermocouple readings for the 
complete program. In Figs. 114-122, steps in the test 

sequence (see Tables 68 and 69) are indicated by num- 
bers. Figures 116, 117, and 118 include individual ther- 
mocouple readings that are then averaged to provide 
mean thermocouple temperatures, as well as battery 
transducer measurements. Similarly, Fig. 115 represents 
average data for the complete program for SN 98, while 
Figs. 119, 121, and 122 provide individual thermocouple 
data and battery transducer measurements. A cool-down 
test for SN 98 was conducted during step 3 (open cir- 
cuit), following discharge at 50 A. The temperature data 
are plotted in Fig. 120. 

TIME, min  

Fig. 114. Thermal test, Surveyor main battery 97, summary of temperature-time data 
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TIME, min 

Fig. 115. Thermal test, Surveyor main battery 98, summary of temperature-time data 
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Fig. 116. Thermal test, Surveyor main battery 97, l -A run 
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Fig. 117. Thermal test, Surveyor main battery 97,3-A run 

72 
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TIME, min 

Fig. 1 18. Thermal test, Surveyor main battery 97, 5-A run 
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TIME, rnin 

Fig. 119. Thermal test, Surveyor main battery 98, 2-A run 
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0 3 6 9 12 

TIME, h 

The 5.0-A discharge curves for both batteries did not 
behave in a manner anticipated from analysis of the 
lower current data. However, cell temperatures were 
not excessive. Battery capacity information is presented 
in Table 70. 

The following is a list of significant findings from 
the tests: 

(1) Both batteries performed within the established 
temperature limits of 115°F. 

(2) The battery temperature transducer data followed 
the peripheral temperature data quite closely. 

(3) Negative plate temperatures were as much as 
12°F higher than peripheral and transducer tem- 
peratures but even the maximum negative plate 
temperature of 106.2S°F was well within safe 
limits. 

(4) The battery voltage during discharge periods 
ranged from 21.5 to 25.5 V. This is in accord with 
previous voltage measurements for simulated oper- 
ation. 

Fig. 120. Thermal test, Surveyor main battery 98, (5) Negative plate temperatures were highly respon- 
open circuit room temperature cooldown sive to current changes, resulting in maxima. 

Table 70. Surveyor main battery capacity compilation (for each charge and discharge cycle) 
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BaHery 
SN 

9 7  

98 

9 7  

98 

voltage unbalance between cells. 

Charge current 
rate, A 

Vendor 
charge 

Vendor 
charge 

2.0 

1 .O 

Total capacity input- 
battery charged to 

27.3 V, A-h 

179.5& 

187.0 

182.7 

178.3 

Discharge cunent 

rate, A 

1 .O 

2.0 

3.0 

4.0 

Total capacity output- 
battery discharged to 

17.5 V, A-h 

153.5 

185.0 

182.0 

176.7 

Date performed, 
1967 

Feb 6 
Feb 8 

Feb 27 
Mar 13 

Feb 18 
Mar 30 

Mar 13 



TIME, min 

Fig. 121. Thermal test, Surveyor main battery 98, 4-A run 

JPL TECHNICAL M E M O R A N D U M  33-432 



TIME, min 

Fig. 122. Thermal test, Surveyor main battery 98,s-A run 

Transducer and peripheral temperatures exhibited 
the damping effect of a large thermal mass; owing 
to this thermal inertia, maxima in transducers and 
peripheral temperatures were damped out, and the 
temperature-time curve had an asymptotic re- 
sponse to current changes. 

(6) Cool-down curves were roughly exponential with 
similar rates for the transducer and negative plate 
temperatures. After a 50-A discharge, room tem- 
perature was approached by the transducer in 
7.5 h and the thermocouples in 7-10.5 h. 

(7) Battery capacity was not affected by the tests. 

(8) Prolonged discharge at high currents will lead to 
excessive negative plate temperatures as illustrated 
by a rate of temperature increase of 81°F/h as a 
result of a 50-A current. Peripheral and transducer 
temperatures increased approximately at the rate 

of 34"F/h. Qualitatively, the data were in accord 
with calorimetric measurements. 

Conclusions. The battery temperature transducer on 
the S m e g o r  main battery afforded a reasonably ade- 
quate measure of battery temperatures as shown by sim- 
ulated missions. Negative plate temperatures during 
discharge were as much as 12°F higher than transducer 
and peripheral temperatures, but well within safe limits. 
However, extended battery drain at high current, such 
as 50 A (not scheduled in the test plan), caused a rapid - 

temperature rise that can deteriorate battery perfor- 
mance. Negative plate temperatures were far more re- 
sponsive to current changes than the other temperature 
measurements, as indicated by the appearance of maxima 
on temperature-time plots. Voltages during a typical 
cycle were within acceptable limits. The battery cool- 
down period after discharge at 50 A was approximately 4 h. 
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b. Calorimetvic meast~rement of heat generation rates. 
Calorimetric measurements were made on the Surveyor 
main battery to: (1) obtain heat generation data under 
specified conditions of charge and discharge at a con- 
stant current, (2) measure heat generation rates during a 
simulated Sur~jeyor mission, and (3) verify an equation 
developed for predicting heat generation rates. 

Description of the calorimeter. The wide interest in 
battery calorimetry, and the lack of commercially avail- 
able equipment, prompts a description of the HAC 
calorimeter in addition to the test results. Basically, the 
isothermal calorimeter measures the heat associated with 
the phase change of a material. This information permits 
calculation of heat generation rates. In the HAC iso- 
thermal calorimeter, this material was Freon-11 and the 
heat of its vaporization provided the phase change. 
Freon-11 boils at 74.g°F, which is near the midpoint of 
the expected temperature range and permits the ready 
comparison with thermodynamic data that refer to cells 
operating at 77OF. 

The HAC calorimeter is shown pictorially in Fig. 123 
and schematically in Fig. 124. The calorimeter is com- 
posed of an inner and an outer chamber. The outer 
chamber serves to insulate the inner chamber from the 
external environment. The Freon in the outer chamber 
is maintained at the boiling point by means of a heater, 
in order to match the temperature in the inner chamber. 
The test battery is placed in the inner chamber (Fig. 125), 
which also contains a heating element. This heating 
element is used for calibration purposes and for the 
measurement of negative heat generation rates from 
the battery, since the Freon in the inner chamber must 
boil at all times during the test. The Freon that boiled 
off from the inner chamber is collected in a measuring 
cylinder after condensation in a condenser, maintained 
at -4.0°F by refrigeration. When the Freon level in the 
cylinder reaches a thermistor, a valve at the bottom of 
the cylinder opens, another valve at the top closes, and 
the time from a digital clock prints. At this time, the 
valves become timer-controlled instead of thermistor- 
controlled. After a preset time, the valves are returned 
to their original positions. The time between trips is a 
measure of the rate of heat generation. 

Fig. 123. Hughes isothermal calorimeter for heat gener- 
ation measurement by Surveyor main batteries 

Resu,lts and concZusions. The curves in Fig. 126 and 
the calculated curves in Figs. 127, 128, and 129 are 
based on Eq. (1) and the assumption that the discharge 
of a silver-zinc cell proceeds in two stages. 

It was further assumed that the electrolyte was sat- 
urated at all times with respect to zincate ion. Figure 127 
shows the comparison between the calculated heat gen- 
eration rate and the measured heat dissipation rate for 
battery 70 while undergoing a constant 3-A charge. The 
area within the calculated curve represents 204 W-h, 
whereas the area under the experimental curve is ap- 
proximately 235 W-h. Figure 128 shows the calculated 
and experimental curves for a constant 7-A discharge 
of battery 70. The discharge data gave a measured 
heat generation rate of 20.5 W, compared to a calculated 
average value of 19.5 W. A typical Surveyor V Mission is 
demonstrated in Fig. 129. In all experiments, the thermal 
inertia of the battery was quite evident. This large heat 
capacity, plus the fact that the battery consists of 14 cells 
that are not all changing from the upper to the lower 
thermal plateau at the same time, precludes a recogni- 
tion of two distinctly different heat output levels. In 
general, good agreement was obtained between calcu- 
lated and experimental heat generation rates. This indi- 
cates the validity of the model and the absence of major 
side reactions. 
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Fig. 124. lspthermal calorimeter 
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Fig. 125. Surveyor battery in isothermal calorimeter 

UPPER PLATEA 

BATTERY CURRENT, A 

20 

Fig. 126. Heat generation characteristics of Surveyor 

main battery at 24OC 

LOWER PLATEAU 
1 
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Fig. 127. Heat generation rates of battery 70-3-A charge 
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Fig. 128. Heat generation rates of battery 70-7-A charge 

JPL TECHNICAL M E M O R A N D U M  33-432 



Fig. 129. Heat generation rates of battery 84, Surveyor V Mission profile 

TIME, h 

2. Lunar surface operation simulation. The purpose 77. Results. Figure 130 shows temperature, pressure 
of this test was to establish the Surveyor main battery and charge potential as a function of time after touch- 
parameters during a typical Surveyors V, VI, and VII down. Figure 131 shows charge current and cell potential 
Mission operation. Specifically, the test served to dem- variations as a function of time after touchdown. Fig- 
onstrate spacecraft operation at temperatures ranging ure 132 shows the effect of operating temperature on 
from 57 to 9S°F. The test sequence simulated transit, battery potential at the TV (2.7-A) and A/SPP (11.4-A) 
landing, and lunar operations 150 h into the lunar night. 

a. Test plun.. The basic test plan for the nine day 
simulation test involving seven batteries is indicated in 
Tables 71 and 72. The test schedule and revisions to 
the test plan are indicated in Table 73. 

Table 71. Temperature profile 

Table 72. Load profile 

of the test day consisting of 1.44 pulse discharges at 
2.66 A and 4.6-5 charge pulses at 0.89 A 

Charging: 16 h at 1.50 A 

TV operation: 6 s/cycle = 4800 cycles over the first 8 h of 
the test day, consisting of 1.44 pulse discharges at 2.66 A 
and 4.6-s charge pulses at 0.89 A 

100 pulses at the rate of 20 pulses at start of tests and after 
every 2 h during the first 8 h of the test day-each pulse 
11.4 A for 65 ms 

Charging: 16 h at 1.50 A 
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TIME AFTER TOUCHDOWN, h 

Fig. 130. A-21E main power battery subsystem test 1-lunar operation phase-time after touchdown 
vs temperature, pressure, and voltage 

loads. While Figs. 131 and 132 are based on six tests, the (3) Figures containing anticipated battery potentials 
remaining data are based on the complete test sequence. on charge and at TV and A/SPP discharge rates 

over the temperature range of 30-125°F were 
Figures 133 summarizes battery potentials, measured prepared to provide a guide for estimating battery 

over the temperature range during the test sequence. voltage under typical operating conditions. 
Figure 134, resulting from the test data, provides a 
means of estimating battery potentials at various antici- 
pated operating rates and temperatures. Similarly, Fig. 135 
shows the time required to recharge the battery as a 
function of capacity at touchdown. The dispersion of test 
data for the seven batteries is summarized in Table 74. 

c. Conclusions. 

(1) The Su~weyor main battery demonstrated that it 
could successfully provide terminal descent poten- 
tials in excess of 18.0 V at temperatures greater 
than 80°F (launch, transit and touchdown test 
phase). 

(2) The Surueyor main battery demonstrated that it 
could successfully operate over a controlled tem- 
perature exposure range of 30-125°F for one lunar 
day and at least 150 h into lunar night. 

- 

(4) An estimate of the time required to fully recharge 
a main battery, assuming a typical range of avail- 
able capacities at lunar touchdown and lunar oper- 
ations using about 6 A-h/day and charging 
24 A-h/day, were prepared to help predict battery 
energy available during lunar operations. 

(5) Based on the completion of six tests, each of nine 
days duration, it was estimated that 176 A-h of 
charge capacity (about 95% greater than dis- 
charge capacity at room ambient) would be avail- 
able for lunar night survival. 

D. Solar-Thermal-Vacuum Tests 

Solar-thermal-vacuum tests were performed prior to 
all missions for the purpose of verifying the functional 
and thermal integrity of the Surveyor spacecraft while 
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TIME AFTER TOUCHDOWN, h 

Fig. 131. A-21E main power battery subsystem test 1-lunar operation phase-time after touchdown vs 
charge current and cell voltages 

30 I +'SSP = A N T E N N ~ O L A R  PANEL POSlTlONER I 

" 
TEMPERATURE, OF 2 

Fig. 132. A-21E main battery subsystem test 1-lunar 
2 
k 

operation phase-temperature vs main battery voltage 
2 

Fig. 133. A-21E main battery power subsystems tests 
1-7 (test 2 omitted), lunar operation phase-battery 
average voltage vs temperature TEMPERATURE, OF 
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TEMPERATURE, O F  

Fig. 134. Surveyor main battery average voltage vs 
temperature and various operating rates 
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TIME TO FULLY RECHARGE, days 

Fig. 135. Recharge of main battery during lunar 
operation (no float charge) 



Table 74. Dispersion of test data, A21 -E lunar surface operation simulation 

bMaximum delta [A) cell voltage occurred between the lower and upper plateau levels. 

exposed to a range of solar conditions in a simulated Table 75. Electrical power performance 

flight environment. Frequently, spacecraft power was data, Surveyor VII 
simulated by a power supply. Although STV tests did not 
always show close agreement with subsequent missions, 
due to mission modifications, a comparison of STV test 
results with flight data will be presented in the subsec- 
tion that follows. 

E. Flight and Postflight Data 

The graphs and tables that follow (Figs. 136-160 and 
Table 75), depict telemetered electrical and thermal 
battery data, obtained during and after transit. For com- 
parisons, the STV and predicted values are shown in 
instances. 

1.  Data presentation. The telemetered electrical and 
thermal battery data are presented as follows: 

Battery charge, A-h 

Battery pressure, psi 

Battery temperature, O F  

Battery terminal voltage at 

Solar panel power out, W 

Surveyor spacecraft Reference Fig. 
32 

I  4 136-141 > 
I I  5 142-146 ?I 2 24 
I I I  6 147 and 148 
IV - 149 and 150 ? 
V 7 151-156 16 

V I  8 157 and 158 MISSION TIME, h 

V I I  9 159 and 160 
Fig. 136. Main battery potential, Surveyor 9 

106 JPL TECHNICAL MEMORANDUM 33-432 



MISSION TIME, h 

Fig. 137. Main battery discharge current, Surveyor I 

0 CHARGE CAPACITY 

1200 POWER CONSUMPTION 

0 10 20 30 40 50 60 70 

LAUNCH TIME, h 

Fig. 140. Battery capacity and total power consumption 
profile from Surveyor I flight 

TlME FROM LAUNCH, h 

Fig. 138. Main battery temperature, Surveyor I 

TlME AFTER TOUCHDOWN, h 

Fig. 141. Main battery temperature during first lunar 
day, Surveyor I 

MISSION TIME, h 

Fig. 139. Main battery manifold pressure, Surveyor I 

2. Discussion. The data indicate generally satisfac- 
tory battery performance during the seven missions. The 
STV test data and predicted values were in reasonable 
agreement with flight and postflight data, especially 
when mission modifications are considered. Owing to 
the availability of a wider range of information concern- 
ing Surveyor V, this mission will be the subject of further 
discussion in the subsequent paragraphs. 

Y 
& I I I 

z PREDICTION ENVELOPE 

+ 40 I I I I 
I I 

TlME FROM LIFTOFF, h 

Fig. 142. Main battery temperature, Surveyor 11 
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0 10 20 30 40 50 60 70 

T lME F R O M  LIFTOFF, h 

Fig. 143. Actual vs predicted battery capacity 
consumption, Surveyor 11 

TlME FROM LIFTOFF, h 

Fig. 144. Main battery discharge current, Surveyor 11 

Fig. 145. Main battery voltage, Surveyor 11 
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TlME FROM LIFTOFF, h 

Fig. 146. Main battery manifold pressure, Surveyor I1 

0 10 20 30 40 50 60 71 
TlME FROM LIFTOFF, h 

Fig. 147. Main battery capacity remaining during 
transit, Surveyor 111 

TlME FROM LIFTOFF, h 

Fig. 148. Surveyor 111 flight data for main battery SN 108 

Comparison of the Surveyor V transit and STV test 
data of Figs. 151 and 152 show no major differences in 
performance. Battery capacity data, shown in Fig. 153, 
indicate a drop in battery capacity below the predicted 
curve as a result of the need for special vernier engine 
firings after midcourse correction and a nonscheduled 
calibration of the alpha scattering instrument. The engine 

1 1 :53 GMT TlME FROM LIFTOFF, h 

Fig. 149. Main battery 123 operation during 
Surveyor IV flight 

-!= 250 
k I I 

0----0 TELEMETRY DATA 

2 TIME FROM LIFTOFF, h 

Fig. 150. Battery capacity remaining, Surveyor IV 

firings were conducted as a result of helium leakage. 
Thus, the residual battery capacity at touchdown was 
estimated as 1830 W-h (83 A-h), rather than a predicted 
2200 W-h (100 A-h). 

Battery operation during the first lunar day (Fig. 155) 
was in accordance with expectations. The battery reached 
a maximum charge of 163 A-h before sundown. 
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LIFTOFF TIME AFTER LIFTOFF, h 

Fig. 151. Surveyor V main battery SN 142 flight performance 

u BATTERY SN 110 

> 30 

W 

160 

w 

120 

s 
80 3 t 

b- 

40 
0 10 20 30 40 50 60 70 80 90 

TlME AFTER LIFTOFF, h 

SURVEYOR V SOLAR-THERMAL-VACUUM 
PHASE A (HIGH SUN) 

Fig. 152. Surveyor V battery SN 110 during STV phase A 

0 10 20 30 40 50 60 70 

TlME FROM LIFTOFF, h 

Fig. 153. Battery capacity profile during transit 
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DATE, SEPT 1967 

Fig. 155. Battery performance during lunar day, Surveyor V 

Fig. 156. Surveyor V lunar night survival plan and predicted battery temperature profile 
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Fig. 157. Main battery SN 150, Surveyor VI flight 

Fig, 158. Main battery SN 117 during Surveyor V I  STV testing 
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0 10 20 30, 40 50 60 70 

TIME FROM LIFTOFF, h 

Fig. 159. Battery energy profile during transit, 
Surveyor VIf 

Lunar night operation was designed to spend the bat- 
tery energy effectively in order to: (1) maintain the 
battery temperature at +20°F for the maximum time 
by dissipating power in compartment A until the battery 
capacity reached 45 A-h (in accord with lunar night 
survival tests), and (2) prevent the battery temperature 
from dropping below approximately -175°F-from 
which the battery could be awakened. Figure 154 pro- 
vides data concerning operation going into the lunar 
night. Figure 156 gives the predicted and actual space- 
craft shutdown times, predicted revival times, and cor- 
responding battery temperature profiles. 

The S u r u e y o ~  V was successfully turned on, on lunar 
day 2, about 147 h after sunrise at the landing site, even 
though the battery temperature at turn-on time was 
100°F above the anticipated level and was increasing 
at the rate of 3.S°F-h. The battery temperature was 
eventually reduced by shading, and the spacecraft was 
-reawakened and operated on lunar day 4 (Ref. 6). There 

is some evidence that batteries in several spacecraft, in- 
cluding Sumeyors I, V, and VII, suffered damage by 
probable short-circuited cells after subjection to the 
rigors of lunar nights. 

F. Conclusions 

As a result of tests reported in this section, the follow- 
ing conclusions may be drawn: 

(1) The main battery was capable of meeting the 
energy requirements of simulated missions for 
Szn.ueyors V, VI, and VII without assistance from 
the auxiliary battery. 

(2) The main battery was able to meet energy require- 
ments for terminal descent, one lunar day, and at 
least 150 h into the lunar night. 

(3) In low temperature operation, the main battery 
delivered 155 A-h at 20°F and 0.75 A, and 42.5 A-h 
at 0°F and 2.0 A. In a constantly dropping tem- 
perature environment, discharge at 0.23 A ceased 
at -33°F and the open circuit potential became 
0.0 V at -147°F. Low rate charging was possible 
after warmup to -40°F and after further warmup, 
the battery accepted a full charge. Thus, limited 
operation was possible below O°F, and some opera- 
tion was possible at -40°F. 

(4) Internal heat generation rates, measured on 
thermocouple-equipped batteries, indicated that 
the battery temperature transducer afforded a 
reasonably adequate measure of battery tempera- 
ture. Negative plate temperatures were consider- 
ably higher than transducer and peripheral 

Fis. 160. First lunar day buttery temperciture and energy level, Surveyor VII  
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temperatures, but were within safe limits during 
simulation tests. Discharge at high rates, such as 
50 A, will result in excessive temperature rise with 
rates of 81°F/h measured on negative plates and 
34"F/h on the transducer and peripheral thermo- 
couples. Such a temperature rise will ultimately 
destroy the battery. 

(5) Calorimetric measurement of heat generation rates 
gave good agreement with theoretical values, based 
on a thermal model, and confirmed thermocouple 
results. 

(6) Telemetered data, obtained during and after the 
flight, indicated satisfactory battery performance 
during all missions and fair agreement with STV 
tests and predicted performance. By careful man- 
agement of the battery capacity, it was possible to 
achieve lunar night survival, where the battery 
recovered after exposure to an estimated minimum 
temperature of - 180°F. 

VIII. Battery Reliability 

A. Introduction 

Throughout the Surveyor battery reliability program, 
the probability of the successful performance of the 
battery for the prescribed mission has been a prime 
consideration. Battery reliability was established at ESB 
by tests on reliability batteries and at HAC by mission 
simulation tests using three flight batteries per mission. 
The three batteries for simulation tests were selected 
from six flight batteries assigned to the mission, with the 
remaining three batteries being shipped to the Air Force 
Eastern Test Range. The conduct of these simulation tests 
provided assurance that the battery could meet mission 
performance requirements. Battery failures were analyzed 
to ascertain the causes of failure so that product improve- 
ment could be properly oriented. The reliability growth 
is a measure of product improvement. 

B. Reliability Test Program 

The battery reliability test program established con- 
fidence in the capability of the battery to perform an 
assigned mission by simulating launch, transit, touch- 
down and lunar operation. A typical simulated mission 
consisted of a low rate discharge (transit), a high rate 
discharge of short duration, with superimposed pulse 
discharges (RADVS during touchdown), and low rate 
charging with periodic charge and discharge pulses 
(lunar operation). 

1 .  Battery reliability tests (ESB). The ESB battery 
reliability tests demonstrated the ability of the flight 
battery to meet the reliability requirements. Nine relia- 
bility batteries were subjected to the required type 
approval vibration test described in Table 3. All nine 
batteries passed the tests and the results were factored 
into the reliability growth presentation (see Fig. 174). 

2. Mission simuktion tests (HAC). The HAC mission 
simulation tests provided a measure of the capability of 
the battery to meet a given mission profile. Owing to the 
basic similarity among these tests, only the Surveyor VI 
Mission simulation is presented. 

a. Procedure. The procedure involved: (1) The normal 
FA test sequence to qualify three batteries for the 
reliability test, and (2) performing the test sequence, 
described in Table 76, on two batteries in a chamber and 
on a third battery at laboratory ambient environment. 

Table 76. Test sequence 

RADVS simulation 

1.5 A, fallowed by 8 h of pulsing 

2.0 A to a limit o f  27 .30 
, -0.14) V, then float-charge 
(+0.01, -0.0) V until the 

ge current decays to less 

In the test sequence of Table 76, the RADVS simu- 
lation function at touchdown consisted of 4.0 min of 
operation at 50 A with four 20-A, 20-ms pulses, super- 
imposed at 1.0-min intervals. During the lunar operation 
simulation sequence, the 16-h charging at 1.5 A involved 
charging with limiting voltage of 27.1 V. The 8-h pulsing 
time during lunar operation simulation included TV and 
A/SPP operation. Television operation consisted of 4800 
cycles (6 s each) over 8 h; each cycIe consisted of a 1.4-s 
pulse discharge at 2.66 A, and a 4.6-s pulse charge at 
0.89 A. On some days of testing, the charge part of the 
pulse was omitted. The A/SPP operation consisted of 
100 pulses; 20 at the start of the 8-h period repeated 
every 2 h. Each pulse draws 11.4 A for 65 ms. 

b. Results. Battery assignments for the reliability test 
are indicated in Table 77. Temperature, pressure, poten- 
tial, current, ampere-hour, and watt-hour data for one 
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Temperature profile 

High temperature 

Table 77. Battery test assignments for reliability test concealed in subsequent assembly. Table 79 summarizes 
the failure mode analysis, the effect on battery per- 
formance, and steps taken to eliminate the cause. In 
addition to failure mode analysis, individual cell, mono- 
block and battery failures were investigated to seek out 
the failure mode. 

2. Analysis of typical flight battery failures. In a typical 
end-of-life failure, separator deterioration resulted from 
many low rate shorts that caused pressure formation and 
heat generation. Two examples of battery failure will be 

high temperature profile (battery SN 152) and the room in the subsequent paragraphs. 
temperature profile (battery SN 154) are presented in 
Figs. 161-168. Calibration curves for temperature and a. Failure of reliabili&j battery SN R-11. ~ a t t e r ~  SN 
pressure transducers were presented in Section V (see with the following 

Fig. 65). Postmission discharge and recharge data are (1) Cells 6 and 8 read 0.000 V. 
presented in Table 78. 

(2) Excessive pressure rise during and after charge. 
c. Discussion and conclusions. The minimum discharge 

potential of 21.5 V during lunar operation simulation was 
well above the minimum permissible value of 17.5 V, 
and was therefore acceptable. The maximum pressure, 
occurring during float-charge, was 23 psia, well under 
alarm conditions (see Fig. 93). Maximum battery tem- 
perature during operation at ambient temperature was 
8g°F, while batteries in a chamber reached 12S°F. As 
evidenced by capacity data, the Surveyor VI batteries 
did not suffer deterioration in capacity as a result of the 
reliability test. On the basis of the results, it was con- 
cluded that the batteries were capable of meeting 
Surveyor VI Mission requirements. 

(3) Low insulation resistance between battery termi- 
nals and ground. 

(4) Evidence of electrolyte leakage around lead wires. 

Autopsy results. An autopsy of the shorted cells 
revealed: 

(1) A short in both cells at the edge of a positive plate 
strut, as shown in Fig. 169. 

(2) Discoloration of six layers of cellophane separator 
from reaction with active positive materials, result- 
ing in the distribution of active material in the 
separator, as plotted in Fig. 170. 

Table 78. Postmission battery capacity data (3) Significant reduction in the wet strength of the 
for reliability test cellophane separator. 

(4) Electrolyte leakage between the cells and the bat- 
tery chassis due to electrolyte paths along the 
voltage tap leads. 

Explanation. Apparently the pressure from the negative 
material forced the separator into the indentation of the 
positive plate assembly (see Fig. 169), causing stresses 
that resulted in the development of a hole in the sepa- 

C. Failure Analysis 
rator. Zinc from the negative plate then penetrated the 
hole to furnish a short circuit path to the positive plate. 

High reliability was sought by an analysis of potential 
flaws in processes and by a detailed investigation of all Recommendations. Design modifications in strut and 
test failures. coining die were made to eliminate the depressed area 

between the edge of the plate and the coined edge and 
1.  Failure mode analysis. Production operations have by revision of the negative frame so that there is no 

been analyzed to establish check points, that will permit negative material in the area of the depression in the 
the inspection for production flaws before they become positive plate. 
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Table 79. Failure mode analysis 
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Process description 

Process silver powder 

and binder material 

lnspect grid material 

and cut to size 

Process silver material 

and grid including 

blanking, sintering 

and pressing, and 

coining operations, 

each followed by a 

physical inspection 

Inspect lug wire 

Spot weld lug wire onto 

plate and inspect 

Roll, cut and inspect 

red spaghetti tubing 

Assemble tubing onto 

lug wire 

Assembly of struts onto 

plate and inspect 

Negative plates 

Mix negative materials 

Cut retainer to size 

and inspect 

Lug wires received 

and inspected 

Cut grid to size and 

inspect 

Spot weld lug wire to 

grid and paint and 

loop lug wires and 

inspect 

Assemble negative 

plate and inspect 

None 

None 

None 

Lug wire 

None 

None 

None 

None 

None 

None 

Grid 

Weld juncture 

edge of silver material 

could tear separator or 

cell pack wrapping 

Defective weld could 

affect cell electrical 

output 

Wire defect which could 

cause wire breakage 

during vibrotion 

testing 

Strut pulling off the 

plate 

Plate cracking at coined 

corner 

Either would cause loss 

of lug wire during 

vibration 

Exposure of grid wires 

could tear or puncture 

separator or cell pack 

wrapping 

Defective weld could 

affect cell electrical 

output 

Degrade performance 

Electrical open 

Electrical open 

Electrical short 

Degrade performance 

Processed plate is inspected 

to detect stray wire 

Each weld is subjected to 

pull test 

Inspection of wire including 

pull and torsion test at 

028 plus addition of 

struts at 039-042 

Strut i s  redundant with lug 

wires-no special steps 

ore taken to prevent 

failure mode 

Processed plate i s  inspected 

to detect stray wires 

Each weld i s  subjected fe 
visual test 



Table 79 Icontd) 

Process description 

Monoblock assembly 

Assemble positive plates, 

negative plates and 

separators 

Receiving inspection, 

machining, assembly 

and final inspection 

of cell cases 

Insertion of cell assembly 

into cell case and 

inspection 

Machining and inspec- 

tion of terminal well 

Install terminal well 

and cement 

Receiving inspection, 

machining and final 

inspection of cell 

covers 

Receiving and inspec- 

tion of vent tube 

Receiving and inspec- 

tion of slot plugs 

Assembling cover 

ossembly 

lnstall cover assembly 

on monoblock and 

inspect 

Receiving inspection of 

voltage tap leods and 

crimp connectors, 

installation of tap 

leods, intercell 

connections, and 

inspection 

Receiving inspection, 

ramaset and point I terminals 

Receiving inspection 

potting materials 

and mixing potting 

compound 

Pet terminal weld and 

inspect 

Item concealed as a 

result of process 

Failure mode 

(discrepancy) 

Plates and separators, I Cracked cellophane, 

individual positive I broken plate, unequal 

plate weights weight distribution 

within cell 

None 

None 

None 

Ability to align 

plates 

None 

Faulty material 

Folding, crinkling or 

tearing separotor 

upon insertion 

None 

None 

None 

Misalignment 

None 

Struts, lug wires Electrolyte leakage due 

to poor encapsulation 

at lug wire 

Effect on battery 

performance i f  

discrepancy exists 

Steps taken to eliminate 

diserepa~ey 

Electrical short or 

degradation in 

performance 

Catastrophic failure 

(battery) 

Electrical short 

Power degradation or 

electrical short 

Power degradation 

Electrical short 

Visual inspection before and 

after assembly segregation 

of plates by weight 

Proof pressure test plus strict 

quality controls to 

eliminate scratches and 

stress buildup 

Special fixture is used 

for insertion 

Dimensional inspection 

Pull test on crimped 

Continuity test 

joint 
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Table 79 (conid) 
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Item concealed as a Failure mode Steps taken to eliminate 
Process description 

Receiving inspection of 

electrolyte material, 

mixing and inspec- 

tion of electrolyte 

Activation of cells Improper amount of Too little-low electrical Weight and visual 

Cell charging and 

inspection 

Monoblock assembly 

and inspection 

Battery assembly 

Cement monoblocks 

together; receiving 

inspection of vent 

tubes and tube 

guards; install vent 

tubes and guards 

Install crimp ionnector 

and top wire; inter- 

monoblock connections 

Receiving inspection 

of standpipe and 

filter; assemble 

standpipe and in- 

spect; install stand- 

pipe assembly and 

inspect 

Install potting channels 

on top of monoblock 

Receiving inspection 

of magnesium case; 

paint cose 

Receiving inspection 

of potting materials, 

mix potting com- 

pound and pot 14-cell 

battery into case 

Receiving inspection; 

inspection of spacers 

and insertion of 

spacers between 

battery and case 

Receiving inspection 

of electrical con- 

nectors and wire; 

assembly and inspec- 

tion of wiring harness 

None 

None 

Adjacent sides of 

monoblocks 

Crimped lug wires 

Cell interior, stand- 

pipe orifice 

Intercell connections 

None 

14-cell battery 

assembly 

Spacer 

None 

Inability to accept 

full charge 

Broken lug wire 

Plugged standpipe 

None 

Void in potting moterial 

could cause cell 

rupture 

Battery alignment 

Poor electrical eonfinuity 

capacity; too much- 

Insufficient capacity 

Power degradation 

Pressure buildup and 

probable cell rupture 

Catastrophic battery 

failure 

None 

Electrical open 

Visual monitoring during 

charge process 

Pull test on crimped joint 

Air flow check and visual 

inspect electrolyte level 

Electrical continuity and 

dielectric inspection 



Table 79 (cantdl 

Process description 

Receiving inspection 

of miscellaneous 

assembly hardware 

Install wiring harness 

and inspect 

Receiving inspection 

and installation of 

vent block 

Receiving inspection 

of potting materials 

and pot channels 

Drill vent block far 

pressure transducer 

Receiving inspection 

of heat transfer and 
pot heat transfer 

in place 

Receiving inspection 

and install manifold 
covers 

Receiving inspection 
of misceMoneous 

assembly hardware 
and temperoture 

transducer mounting 
block; install mount- 

ing block 

Receiving inspection 

of miscellaneous 

mounting hardware 

and holddown bars; 
point bars; install 

bars using osso- 

ciated hardware 

Receiving inspection 

and installation of 
flow hold plug 

Proof and leak test; 
inspection tests 

Receiving inspection; 

fabrication, inspec- 
tion and installation 

of terminal board 
assembly 

Effect on battery 

performance if 
discrepancy exists 

Electrical open, power 

degrodotion 

Power degradation 

Cell case rupture, power 

degradotion 

Steps taken to eliminate 

discrepancy C 
Pull test on crimp 

connections, electrical 
continuity check 

Proof pressure and leak 

check; manifold flow 

check 

Manifold flow check, proof 

pressure and leak check 
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Table 79 (contd) 

Process description 

Receiving inspection 

of temperature 
transducer and asso- 
ciated hardware; 

fabrication, inspec- 

tion and installation 
of transducer 

assembly 

Receiving inspection 
of pressure trans- 

ducer, O-ring and 

associated hard- 
ware, installation 
of transducer 

Receiving inspection 

of cable clamp ond 
safety wire, and 

associated hard- 
ware, install clamp 
and wire 

Battery assembly and 
inspection 

Receiving inspection 

shipping cover, 
stencil ink; install 

and inspect 

Receiving inspection 
of packaging ma- 

terials; final pack- 
aging and inspection 

Item concealed as a 
result of process 

None 

None 

None 

None 

None 

None 

Effect on battery 
Failure mode Steps taken to eliminate 

performance i f  
(discrepancy) discrepancy exists discrepancy 

Transducer failure I Loss of engineering I Functional preassembly tests 

Transducer failure Built-in redundancy of 
manual override 

Broken cable clamp of 

safety wire 

None 
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r POINT OF SHORT I N  CELL 6 

Fig. 169. Configuration of positive plate in area of shorts 

b. Failure of battely SN 74. Battery SN 74 exhibited 
the following failure symptoms: 

(1) During open circuit stand, rising battery pressure, 
rising battery temperature, and dropping battery 
potential were indicated. 

(2) After 2 h of charge, lower potentials were indicated 
on cells 1, 4, 5, and 13. 

Autopsy results. An autopsy of the battery indicated: 

(1) Massive crystal growths (potassium oxalate) against 
the positive plate (Fig. 171) and between layers 
of separator. 

(2) Discoloration from layer to layer of separator 
(Fig. 172). 

(3) A relationship between the presence of oxalate 
crystals and separator discoloration. 

Explanation.. It is postulated that the following events 
occurred: 

(1) Hydrolysis of cellophane, forming glucose. 

(2) Oxidation of glucose by silver oxide to form oxalic 
acid. 

(3) Conversion of oxalic acid to potassium oxalate. 

(4) Crystal growth causing increased pressure areas, 
and decrease in separator thickness. 

0 1 2 3 4 5 6 

SEPARATOR LAYER NUMBER (M4TERIAL: CELLOPHANE) 

Fig. 170. Silver content of separator in failed 
reliability battery, flight model 

(5) Collection of silver from the less soluble but more 
active divalent oxidation state (Ag+2) about the 
growth centers. 

(6) Creation of a low resistance path between positive 
and negative plates, causing a low rate short. 

D. Reliability Growth of Surveyor Main Battery 

The reliability growth for the several generations of the 
Surveyor main battery has been calculated for transit and 
the first and second lunar days. This subsection provides 
information concerning the method of calculation and 
the results of such calculations for reliability at the 
80% confidence level. 
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Fig. 171. Oxalate crystals on positive plate 

JPL TECHNICAL MEMORANDUM 33-432 



Fig. 172. Typical deterioration of separator-Surveyor main battery 
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Fig. 172 (contd) 
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Fig. 172 (contd) 

JPL TECHNICAL MEMORANDUM 33-432 



1.  Methods of calculation. The reliability values are Table 80. Calculated failure constants 
the product of life and capacity reliabilities, where: 
life reliability (Rs) is an exponential function (Fig. 173), 
that defines the probability that the battery will function 
successfully for a specified mission without failure due to 
cell shorting. Life reliability is calculated by the equation 

where 

t = required life 

M = mean time to failure = 
total life 

f 
f = failure constant 

Failure constants for the 80% confidence limit are stated 
in Table 80. Capacity reliability (Rc) is a normal function (Fig. 173) 

and is defined as the probability that the battery will 
deliver the required ampere-hour output. Capacity relia- 
bility was obtained by calculating the number of standard 
deviations that the normal distribution was above the 
specified requirement using the equation 

K ~ = X - A  

where 

K = the number of standard deviations 

a = the standard deviation 

.% = the distribution mean 

BATTERY LIFE A = the specified requirement 

SPECIFICATION 

The reliability value was then obtained using a table of 
tolerance factors for normal distributions (Ref. 11). 

Battery reliability has been calculated for Surveyor 
batteries, subjected to the following mission: 

(1) The transit phase with 67 h of successful operation 
without shorted cells and delivery of 1.6 and 7.0 A-h. 

(2) Lunar day 1 with 80 h of successful operation and 
147 h without failure due to shorts, with delivery 
of 1.6, 7.0, and three times 12 A-h. 

BATTERY OUTPUT CAPACITY 
(3) Lunar day 2 with 863 h of successful operation 

without failure due to shorts, with delivery of 
Fig. 173. Battery life and output characteristics 1.6, 7.0, 60, 30, and 126 A-h. 
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TOTAL NUMBER OF CELLS PRODUCED AND TESTED 

Fig. 174. Life reliability growth presentation 

Life data for cells and batteries were obtained by screen- 
ing laboratory test data. Failures from unreasonable 
causes, such as high temperature storage, from con- 
sideration were not included. 

2. Results and discussion. Results of the reliability 
growth calculations are shown in Fig. 174. It is interesting 
to note that model changes, such as the introduction of 
the first prototype batteries (accompanied by charge 
acceptance problems), are reflected by drastic changes in 
calculated reliability. The reliability growth calculations 
do not appear to take into account failure during charge, 
which could well be a major cause. However, the absence 
of battery failures during the mandatory phases of all 
missions is the best testimonial for the high reliability of 
the flight model battery. 

E. Conclusions 

Reliability tests preceding missions and actual missions 
have established the high reliability of the final flight 

version of the Surveyor main battery. The high degree 
of reliability was achieved by product improvement, 
resulting from painstaking failure analyses and quality 
control. 

Typical end-of-life failures were due to separator 
failure, caused by hydrolysis of cellophane separator 
material with subsequent formation of potassium oxalate 
crystals by oxidation of the hydrolysis product. Silver 
oxide acts as oxidizing agent in this proposed reaction 
mechanism. Ultimately the growth of potassium oxalate 
crystals leads to decrease in separator thickness and 
eventual penetration of the separator material, termi- 
nating in a plate-to-plate short between positive and 
negative plates. 

IX. Surveyor Auxiliary Battery 

A. Purpose 

The auxiliary battery provided a backup for both 
emergency power and peak power loads for the main 
battery and solar panel and supplied additional power 
for the engineering payload during the first lunar day. 

A battery containing similar cells had already been 
qualified to Lockheed Missiles and Space Company speci- 
fications for use on the Mercury and Agena programs, for 
which reason only a limited test program was undertaken. 

This section provides a brief treatment of the per- 
formance requirements, a description of the auxiliary 
batterys design, and performance. 

B. Program Summary 

The auxiliary battery program got underway in May 
1963 with a preliminary design effort and the preparation 
of a procurement specification. Since the auxiliary battery 
was essentially identical to an earlier Lockheed Aircraft 
Company spacecraft battery, no sharply defined experi- 
mental, developmental, prototype and flight phases were 
discernible. All generations of auxiliary batteries used the 
same cell and the differences in batteries were confined 
to matters such as changes in canister dimensions, potting 
material used on cables, etc. Therefore, the data for even 
the experimental model are applicable to flight batteries. 
Table 81 summarizes important dates in the program. 

'Eagle-Picher Company, Joplin, Mo., Model 4193 MAP. 
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Table 81. Auxiliary battery program milestones 

Delivery of first battery A 

Completion of first type approval test A 

First spacecraft launch (SC-1) 

Launch of SC-2 

Launch of SC-3 

C. Performance Requirements 

The auxiliary battery was required to meet the follow- 
ing criteria for a minimum period of 30 days after 
activation: A potential between 18.5 and 26.0 V when 
discharged in the temperature range from 70 to llO°F 
in accordance with Fig. 175. This included a current of 
50 A for 4 min, followed by five 70-A, 50-ms pulses. 
The battery also had to be capable of delivering the 
watt-hour capacity shown in Table 82 after activation, 
when discharged in accordance with Fig. 176. 

Environmental performance requirements generally 
resembled the Surveyor main battery requirements (for 
further details, see Section 11). 

D. Battery Design Description 

1. General. The auxiliary Surveyo~ battery was a pri- 
mary silver-zinc battery, consisting of 14 series-connected 
cells in plastic cases (styrene-acrylonitrile copolymer) 
and potted into a magnesiumg canister sealed by a 
gasketed aluminum cover. A side view of the auxiliary 

Table 
battery is presented in Fig. 176 with the pressure relief 

Auxiliary battery watt-hour requirements valve and the connector shown to the left of the battery. 
A top view of the battery with the cover removed is 
presented in Fig. 177. The large teflon discs served as 

'AZ-91 alloy. 

0 I I 
713.2 720.0 

TIME FROM ACTIVATION, h (NOT TO SCALE) 

Fig. 175. Auxiliary battery load and temperature profile 

138 

Fig. 176. Auxiliary battery 

JPL TECHNICAL MEMQRANDUM 33-432 



Table 83. Characteristics of the Surveyor 
auxiliary battery 

Fig. 177. Top view of auxiliary battery, cover removed 

gas vents to the sealed volume between cells and canister 
top with the pressure relief valve preventing buildup of 
excessive pressure. This valve was set to open at a 
differential pressure of 9.0-15.0 psi, reclosing at 5.0-psi 
minimum. A partial list of hardware items is included in 
Table 83. Other significant features, visible in Fig. 177, 
are the intercell connectors and cell terminals, gasketed 
screws that permit access for electrolyte addition during 
activation, and the gasketed battery cover. 

A metal plate was placed between the two seven-cell 
rows and a temperature transducer (platinum resistance 
type), of the type used in the main battery, measured the 
center cell case temperatures. 

The activated auxiliary battery weighed a maximum of 
21.0 lb having maximum dimensions of 6.0 X 9.4 X 6.3 in. 
It was stud-mounted to the auxiliary battery compart- 
ment and secured to a platform cantilevered from the 
spaceframe between legs 2 and 3 (see Fig. 3). 

2. Electrical. The simplified auxiliary battery sche- 
matic diagram (Fig. 178) shows the wiring of the battery. 
Figure 179 features a simplified schematic of the auxiliary 
battery control, illustrating the role of the auxiliary 
battery in the power subsystem. 

The auxiliary battery control provided for automatic 
and command-controlled application of the auxiliary 
battery to the unregulated 22-V bus in the event the main 
battery potential dropped below a preset level. 

Electrode dimensions as well as information concern- 
ing the type of electrolyte (31% potassium hydroxide), 
electrolyte volume, separators and other significant 
factors are summarized in Table 83. It is significant that 
the separator system consisted of only two layers with 
resultant short activated stand. Recharge would lead to 
rapid separator penetration with shorts between elec- 
trodes and to excessive gassing. 

Characteristic 

Positive 
Height, in. 

Width, in. 
Thickness, in. 
Type of grid 
Number of plates 
Calculated effective discharge 

area, in.2 
Theoretical positive capacity, A-h 

Negative 
Height, in. 
Width, in. 
Thickness, in. 
Type of grid 
Number of plates 
Theoretical negative capacity, A-h 

Electrolyte 

Type 
Concentration, wt % 
Amount per cell, in.3 

Separator 
No. 1, next to positive plate 
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Result 

3.00 
2.375 
0.025 

410 expanded silver 
11 

156.75 

69.0 

3.00 
2.375 
0.032 

410 expanded capper 
12  
94.5 

Aqueous KOH 
3 1 

3.66 

133 Visking 
R35D Viskan 

10-32 silver-plated 

Battery and temperature transducer Microdot No. 8-43EF- 

Temperature transducer 
Platinum resistance 

Manufacturer Transonic No. T-4086BS-1 

Pressure relief valve 
Manufacturer Republic Manufacturing Co. 

NO. 1-1 358-2 

Styrene-acrylonitrile 

Manufacturer Union Carbide No. C11 

Wait-hour dischargea 



Fig. 178. Simplified auxiliary battery schematic show- 
ing temperature sensor and Microdot connector 

AUXILIARY BATTERY 
CONTROL UNREGULATED BUS 

? 

a 
HIGH 

CURRENT 
MODE OFF 

-----A - 
MAIN - - AUXILIARY 

BATTERY 1 BATTERY 
- - 

Fig. 179. Simplified schematic of auxiliary battery 
control unit 

3. Activation. Activation of the auxiliary battery was 
performed by removing the 14 filler screws, placing the 
activation rack into position (Fig. 180), then emptying 

Fig. 180. Activation processor 

the contents of 14 electrolyte-containing bottles, prefilled 
by the manufacturer, into individual compartments of the 
activator rack. When the drainage was completed, the 
activator rack was removed and the filler screws with 
washers were reinstalled. After a minimum of 2 h, the 
battery was ready for use. 

E. Auxiliary Battery Performance 

1. Parametric tests. 

a. Discharge. Discharge of typical auxiliary battery 
cells at 80°F from the lower plateau gave the potentials, 
plotted in Fig. 181. The temperature dependence of the 
cell potential is illustrated by Fig. 182 for 60-A pulses. 
Typical capacity retention data for activated storage at 
80°F are shown in Fig. 183. The stand time as a function 
of activated storage temperature for delivery of 1000 W-h 
is shown in Fig. 184. The discharge capacity of the 
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DISCHARGE RATE, A ACTIVATED STAND TIME, days 

Fig. 181. Cell potential vs discharge rate plateau Fig. 184. Stand time to capacity of 1000 W-h vs 

potential 80°F temperature 

tests were run on a discharged battery having an open 
2 
W 

> 1.5 circuit potential of 12.4 V with the results shown in zi 2 1.4 Table 84. 
Z +  W . 6  2 1.4 
5 = 
t E 18.9 $ 2 Another test with a fixed charge rate of 2.0 A and a 
'2 
3 charge time of 0.25 h was performed to ascertain the 
9 TEST TEMPERATURE, O F  charge acceptance as a function of battery capacity. 

Results from this test are summarized in Table 85. 
Fig. 182. Cell plateau potential vs discharge - 

temperature (60-A discharge rate) In summary, the test data indicate a capability for 
accepting a limited charge, but the possibility of sepa- 
rator shorting must be given serious consideration. 

100- 

8 Table 84. Charge tests on discharged battery 
E- 
E 
2 
Y 
cr 50 

2 - 
u \ 
Q 

9 
0 

0 10 20 30 40 

ACTIVATED STAND TIME, days 

Fig. 183. Auxiliary battery charge retention capacity 
Table 85. Maximum charge voltage test summary 

at 80°F 

auxiliary battery was determined as 52.3 k0.925 A-h, 
where the deviation represents 1 o, when discharged in 
accordance with Fig. 175. 

b. Charge acceptance tests. Tests were performed to 
determine if the auxiliary battery could accept a limited 
charge as a means for holding down the spacecraft bus 
potential during early hours of the lunar day. Charge 
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2. Flight acceptance tests. Flight acceptance tests in- 
cluded temperature transducer calibration check, pressure 
tests, activation by addition of electrolyte, and a per- 
formance test consisting of a 70-A discharge at 70°F for 
10 s during which the minimum battery potential had to 
be no less than 18.5 V. Other tests included dimensional, 
weight, center of gravity, visual inspections, and insu- 
lation resistance. 

Pressure tests consisted of a pressure tightness test and 
a valve release pressure test. The pressure tightness test 
involved removal of the auxiliary test port plug visible 
in Fig. 177, evacuating the battery to 5.0 in. of mercury, 
backfilling with helium to a pressure of 5 psia; finally 
the ambient pressure was reduced to a maximum of 
lo-" torr for at least 5 min and the helium leak rate 
measured. The leakage rate could not exceed cm3/s. 
Similarly, the function of the release valve was tested 
with a dry gas to ascertain proper opening and closing 
pressures. 

3. Reliability tests and reliability. 

a. Type approval tests. Type approval tests included 
the tests described in the preceding paragraphs and 

vibration and acceleration tests before, during, and after 
which the battery was discharged at a constant 6.0 A. 
The tests were similar to the Surveyor main battery tests 
and will not be discussed relative to this battery. 

Z?. Battejy burst pressure test. An auxiliary battery was 
pressurized in the absence of the relief valve with dry 
nitrogen. At 102 psi, the magnesium canister of the bat- 
tery fractured near the top of the battery, but no spillage 
of electrolyte occurred. 

Battery failures. A typical failure mode, resulting in 
cell shorts, arose from poor edging of the negative plates. 
The high spots on the plates eventually led to penetration 
of the separator material. An improved plate-cutting 
technique was employed to eliminate this source of failure. 

4. Solar-thermal-vacuum tests. Solar-thermal-vacuum 
tests were performed on spacecraft power subsystems 
containing the auxiliary battery. In a typical STV test on 
Surveyor I I I ,  the auxiliary battery furnished 18.9 A-h, 
reached a maximum battery temperature of 52.g°F, and 
a minimum battery temperature of 20.3"F. During some 
terminal descent runs, an additional power supply 
(Christie) supplied all or part of the energy normally 
delivered by the auxiliary battery. 

TlME FROM LIFTOFF, h 

Fig. 185. Transit temperature of auxiliary battery 

5. Flight experience. Owing to the similarity in the 
flight performance throughout the four missions sup- 
ported by auxiliary batteries, only Surveyor I I I  flight data 
are shown. Figure 185 shows the transit temperature of 
the auxiliary battery and compares it to the predicted 
envelope. Figure 186 depicts the battery voltage during 
transit, and Fig. 187 the residual capacity remaining in 
the main and auxiliary batteries as a function of flight 
time. In general, the flight data were reasonably close to 
predicted values. The auxiliary battery contributed rela- 
tively little to the battery load during flight. The auxiliary 
batteries performed satisfactorily during transit on the 
Surveyor I-IV Missions (see Ref. 6). 

TlME FROM LIFTOFF. h 

Fig. 186. Auxiliary battery voltage during transit 
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Fig. 187. Battery capacity remaining during transit 

The Surveyor I I I  spacecraft current sensors showed an  
abnormal discharge current of several amperes during 
lunar day 1. This fault was attributed to a short from the 
auxiliary battery positive terminal to spacecraft ground. 
Removal of the auxiliary battery from the line eliminated 
the power anomaly. The main battery was capable of 
providing the required electrical energy demands of the 
spacecraft. 

F. Conclusions 

The Surveyor auxiliary battery was based on a design, 
previously qualified and used on the Alercu~y and Agena 
programs. Limited testing under the Surveyo~+ program 
served to identify problem areas and the required cor- 
rections were made. In general, the main battery was 
capable of providing the required battery support and 
the auxiliary battery played only a minor role, leading to 
eventual elimination of this equipment from the space- 
craft electrical system. 

JPL TECHNICAL MEMORANDUM 33-432 



Appendix 

Definition of Terms 

I. Abbreviations 

A-21 model designation for engineering payload con- 
figuration of the spacecraft 

A/SPP antenna/solar panel positioner 

ESB ESB, Incorporated (formerly Electric Storage 
Battery Co.) in this report, usually the Missile 
Battery Division, Raleigh, North Carolina 

FA flight acceptance 

HAC Hughes Aircraft Company 

JPL Jet Propulsion Laboratory 

PVA polyvinyl alcohol 

RADVS radar altimeter and doppler velocity sensor 

SC spacecraft 

SN serial number 

STV solar-thermal-vacuum 

TV television 

11. Definitions 

Capacity-deliverable electrical output, A-h 

Charge acceptance, charge input-electrical input, A-h 

Charged storage-storage of open-circuited battery in 
charged condition 

Cutoff potential-end of charge or end of discharge 
potential, as appropriate 

Cycle life test-a test designed to determine the life 
time of a cell, monoblock, or battery when subjected to 
repetitive charge-discharge cycles 

dc impedance-dynamic dc resistance 

Discharge capacity-see "capacity" 

Discharge efficiency-(capacity/charge input) X 100, % 

Discharge rate-electrical current, A 

Discharged storage-storage of open-circuited battery 
in discharged condition 

Energy capacity-see watt-hour capacity 

Float charge-a constant potential, low rate, charge, 
applied to terminate charge 

Lunar day-fourteen earth days 

Lunar night-fourteen earth days 
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Appendix (contd) 

Monoblock-a cell pack, contained in an integral case 

Output potential-electrical potential, measured at cell, 
monoblock, or battery terminals, as appropriate 

Overcharge-charge beyond the charge acceptance of 
the cell, monoblock, or battery 

Plateau-a region in the voltage-current characteristic 
curve, where the slope is small 

Stand loss-loss in capacity during storage, % per month 

Top charge-a low rate constant current charge, gener- 
ally applied near the end of charge 

Watt-hour capacity-deliverable electrical energy, W-h 

I l l .  Trade Names 

Table A-1 . Trade names 

Cycolac T-1000, T-2502 

CHz hardener Pittsburgh Plate Glass Co. 

Union Carbide 

Eccospheres S1 Emerson & Cuming 

Emerson & Cuming X I  21 6 Emerson & Cuming 

Shell Chemical Co. 

Union Carbide 

Trichlorofluoromethane E.I. Du Pont de Nemours 

Dichlorodifluoromethane E.I. Du Pont de Nemours 

E.I. Du Pont de Nemours 

The Polymer Corp. 

E.I. Du Pont de Nemours 

Copolymer of  styrene and acrylonitrile Union Carbide 

Polyvinyl chloride 

Epoxy-glass laminate Synthane Corp. 

Triethylenetetramine Magnolia Plastics 

Viskon CM 3005X Cellulosic felt 
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storage capacity f o r  the  t r a n s i t  and landing phases. 

The main ba t te ry  design evolved over four d i s t i n c t  developmenl; phases t ha t  
were designated: experimental, development, prototype and f l i g h t .  Evolution 
of the f i n a l  design, the  t e s t  data  r e l a t i ng  t o  each model and the  logic  leading 
t o  the  adoption of design improvements are described i n  this repor t .  Problem 
areas  and solut ions  are  discussed a s  they r e l a t e  t o  each of the  phases. 

Unique fea tures  of t h i s  l imited-cycle-l ife si lver-zinc ba t t e ry  include high 
energy density (80 W-h/lb ) , hermetically- sealed design, a common gas ma.nif o ld  
and a pressure transducer t h a t  permitted automatic charge termination. 

The ba t t e ry  e l e c t r i c a l  and physical  charac te r i s t i cs  a re  presented i n  d e t a i l  
f o r  each model. Data are  included from qua l i f i ca t ion ,  acceptance, solar-  
thermal-vacuum, and mission simulation t e s t i n g  a,nd ac tua l  f l i g h t ,  Thermal 
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and calorimetric measurements a r e  presented with t he  lunar n ight  su rv iva l  

The aux i l i a ry  b a t t e r y  was a primary s i lve r -z inc  ba t t e ry ,  A br ie f  design 
descr ip t ion i s  presented along with l imi ted laboratory  and f l i g h t  t e s t  data.  
Mission simulation and f l i g h t  data,  f o r  both main and aux i l i a ry  ba t t e ry  
models, ind-icate t h a t  design goals were e i t h e r  met o r  exceeded. This success 
was achieved by a thorough development and t e s t  program, followed b y  con- 
s iderable  emphasis on t i g h t  control  of manufacturing processes during th.e 
fa-bricat ion and a.ssembly of f l i g h t  ba t t e r i e s .  
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